SHARPER NMR: fast and accurate analysis of molecules, reactions and processes

更清晰的 NMR:快速准确地分析分子、反应和过程

基本信息

  • 批准号:
    EP/S016139/1
  • 负责人:
  • 金额:
    $ 46.48万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Nuclear Magnetic Resonance (NMR) spectroscopy is a very useful analytical technique, which has applications across the range of sciences, including medicine, biology, geosciences, physics and chemistry. It can be performed on living organisms, solid state materials, or molecules dissolved in liquids. This proposal focusses on the solution state NMR spectroscopy.Solution state NMR is a bread and butter technique for chemists. It has been around for 70 years, but does not show any sign of slowing down in its development, improvement, and increased efficiency. What distinguishes NMR from other spectroscopies is the longevity of the excited states of nuclei (or spins, as we often called them) that are subjects of NMR experiments. Their lifetime on the order of milliseconds to seconds allows scientists to design elaborate ways of spin manipulation before, or these days also during, signal acquisition. The purpose of these manipulations is to obtain specific information about the structure or the chemical state of the molecule, including interactions with other molecules.Such manipulations are important for several reasons: (i) sometimes there is too much to see and we need to simplify NMR spectra in order to access the information we require. (ii) NMR is a relatively insensitive technique and compared to other analytical techniques, such as for example mass spectrometry (MS), requires large amounts of material (typically milligram quantities, compared to micro, nano grams or even pico grams that are sufficient for MS). (iii) In its standard implementation, NMR can be too slow to monitor fast processes that are occurring on millisecond to second times scales. (iv) Ideally, solution state NMR is performed on homogeneous samples and standard techniques struggle to provide high quality information about heterogeneous system, e.g. characterisation of processes taking place at the interface of two immiscible liquids, or when a gas is bubbled through a solution.This proposal addresses the difficulties outlined above and aims to design novel NMR techniques that allow information to be obtained under circumstances where this is not as yet possible (e.g. heterogeneous systems), or bring evident improvements to existing techniques in terms of efficiencies (time saving) and quality of information obtained. Accuracy of NMR parameters, that are ultimately interpreted to provide chemical structures, characterise chemical reactions, or determine molecular sizes, will be improved. The focus is on (i) monitoring of fast chemical reactions and (ii) characterising molecular sizes and (iii) going beyond the primary structure of molecules (the order in which the individual atoms are connected to each other) to how the atoms are arranged in the three-dimensional space (conformation, tertiary structure). Such information is crucial to our ability to rationalise intermolecular interactions (e.g. interactions of drugs with biomacromolecules). Another important aspect of the proposed techniques is that they can be applied to complex systems. NMR has traditionally been very good in studying pure compounds, but to this day struggles to study them as part of mixtures. In real life situations it is not always possible to separate out individual molecules from mixtures, and many industries must learn how to deal with mixtures efficiently. We will work with a manufacture of benchtop NMR spectrometers to bring the developed techniques directly into fume hoods and production lines, out of the specialised NMR laboratories. We anticipate that the new methods we will develop will be applied across a wide spectrum of academic and industrial research.
核磁共振(NMR)光谱是一种非常有用的分析技术,在整个科学范围内都有应用,包括医学,生物学,地球科学,物理和化学。它可以在溶于液体中的生物体,固态物质或分子上进行。该建议的重点是溶液状态NMR光谱。解决状态NMR是化学家的面包和黄油技术。它已经存在了70年,但没有显示出放慢其发展,提高和提高效率的任何迹象。 NMR与其他光谱镜的区别是核的激发态的寿命(或我们通常称为它们的旋转)是NMR实验的受试者。他们在毫秒到几秒钟的命令上的寿命使科学家可以在恢复信号获取之前或这些天设计精心的旋转操作方式。这些操作的目的是获取有关分子的结构或化学状态的特定信息,包括与其他分子的相互作用。操纵很重要,原因是多种原因:(i)有时候有太多的观察,我们需要简化NMR光谱以访问我们所需的信息。 (ii)NMR是一种相对不敏感的技术,与其他分析技术(例如质谱(MS))相比,需要大量材料(通常是毫克数量,与微型,纳米rams相比,甚至是毫无疑问的Pico grams,甚至是MS的PICO gram)。 (iii)在其标准实现中,NMR可能太慢,无法监视以毫秒至第二次尺度发生的快速过程。 (iv)理想情况下,解决方案状态NMR是在均质样本上进行的,标准技术很难提供有关异质系统的高质量信息,例如在两种不混溶液体的界面或通过解决方案冒泡时发生的过程的表征。该建议解决上述困难,并旨在设计新型的NMR技术,在这种情况下允许在这种情况下尚无可能在可能的情况下获得信息(例如,在各种系统中可以保存的质量及时及时的质量,都可以在可能的情况下获得。最终解释为提供化学结构,表征化学反应或确定分子大小的NMR参数的准确性将得到改善。重点放在(i)监测快速化学反应和(ii)表征分子大小和(iii)超出分子的主要结构(彼此相互连接的顺序)到原子如何在三维空间(构象,三级结构)中排列的。此类信息对于我们合理化分子间相互作用的能力至关重要(例如,药物与生物ac纤维分子的相互作用)。提出的技术的另一个重要方面是它们可以应用于复杂的系统。传统上,NMR在研究纯化合物方面一直非常出色,但是直到今天,它一直在努力研究它们作为混合物的一部分。在现实生活中,并非总是有可能将单个分子与混合物分开,许多行业必须学习如何有效地处理混合物。我们将使用台式NMR光谱仪的制造,以将开发的技术直接从专门的NMR实验室中带入烟雾罩和生产线中。我们预计我们将开发的新方法将在各种各样的学术和工业研究中应用。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Monitoring off-resonance signals with SHARPER NMR - the MR-SHARPER experiment.
使用 SHARPER NMR 监测非共振信号 - MR-SHARPER 实验。
  • DOI:
    10.1039/d2an00134a
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Davy M
  • 通讯作者:
    Davy M
SHARPER-DOSY: Sensitivity enhanced diffusion-ordered NMR spectroscopy.
  • DOI:
    10.1038/s41467-023-40130-2
  • 发表时间:
    2023-07-21
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Peat, George;Boaler, Patrick J.;Dickson, Claire L.;Lloyd-Jones, Guy C.;Uhrin, Dusan
  • 通讯作者:
    Uhrin, Dusan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dusan Uhrin其他文献

Assessment of the composition of gins by nuclear magnetic resonance spectroscopy
通过核磁共振波谱评估杜松子酒的成分
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kacper Krakowiak;Dusan Uhrin;Ruaraidh McIntosh;David Ellis
  • 通讯作者:
    David Ellis

Dusan Uhrin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dusan Uhrin', 18)}}的其他基金

Supporting 19F-centered NMR investigations across a range of biological applications
支持一系列生物应用中以 19F 为中心的 NMR 研究
  • 批准号:
    BB/X019756/1
  • 财政年份:
    2023
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Research Grant
A National Network for Applications of High-Field NMR in the Life and Physical Sciences
高场核磁共振在生命和物理科学中应用的国家网络
  • 批准号:
    EP/R030065/1
  • 财政年份:
    2018
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Research Grant
Structuring the Future - Underpinning world-leading science in EaStCHEM through cutting edge characterisation
构建未来 - 通过尖端表征巩固 EastCHEM 世界领先的科学
  • 批准号:
    EP/K039717/1
  • 财政年份:
    2013
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Research Grant
The use of paramagnetic tags in structure determination of protein-glycosaminoglycan complexes.
顺磁标签在蛋白质-糖胺聚糖复合物结构测定中的应用。
  • 批准号:
    BB/D020867/1
  • 财政年份:
    2006
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Research Grant
Studies of biomolecules and their interactions by using NMR spectroscopy with cutting edge sensitivity.
使用具有尖端灵敏度的核磁共振波谱研究生物分子及其相互作用。
  • 批准号:
    BB/D524775/1
  • 财政年份:
    2006
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Research Grant

相似国自然基金

NMR研究乳酸化TGIF1调控TGF-β/Smad信号转导通路的分子机制
  • 批准号:
    22374155
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于In-cell NMR策略对“舟楫之剂”桔梗中引经药效物质的快速发现研究
  • 批准号:
    82305053
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
锌基复合金属氧化物催化CO2加氢反应的固体NMR谱学研究
  • 批准号:
    22372160
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超极化增强的固体NMR方法及在分子筛催化不饱和醛选择性加氢反应中的应用研究
  • 批准号:
    22372179
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Fast, Cost-Effective and Fully Automated Structure Verification through Synergistic Use of Infrared and NMR Spectra
通过红外和核磁共振光谱的协同使用进行快速、经济高效的全自动结构验证
  • 批准号:
    2894203
  • 财政年份:
    2023
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Studentship
A Quantum Dot Probe for Nanosecond-Timescale Imaging of Fast Biological Processes
用于快速生物过程纳秒级成像的量子点探针
  • 批准号:
    9502603
  • 财政年份:
    2018
  • 资助金额:
    $ 46.48万
  • 项目类别:
Development of fast ionic conductors for next generation batteries by using soft and giant closo-ions
利用软离子和巨型闭离子开发下一代电池的快速离子导体
  • 批准号:
    18H03832
  • 财政年份:
    2018
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Dynamic Nuclear Polarization Enhanced Solid-State NMR Spectroscopy at Very High Field and Fast MAS
极高场和快速 MAS 下的动态核极化增强固态核磁共振波谱
  • 批准号:
    362536103
  • 财政年份:
    2017
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Research Fellowships
Structure and Mechanism of HERC5-dependent ISGylation
HERC5 依赖性 ISGylation 的结构和机制
  • 批准号:
    10792678
  • 财政年份:
    2017
  • 资助金额:
    $ 46.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了