The Development of Novel High-Performance Advanced Microstructured Materials and their Associated Continuum Models

新型高性能先进微结构材料及其相关连续体模型的开发

基本信息

  • 批准号:
    EP/S019804/1
  • 负责人:
  • 金额:
    $ 114.28万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

This is an extension of the Fellowship: 'NEMESIS' (New Mathematics for Materials Modelling in the Engineering Sciences and Industrial Sectors).Advanced materials sit at the heart of modern technology and are at the forefront of many improvements in quality of life. Key to enhancing material properties is a deep understanding of the link from microstructure to macroscale properties. This requires a diverse range of science including theoretical modelling, computational simulation and experimentation. This Fellowship Extension project sits at the triple point of these approaches and principally, uses the experience of the team, in particular in advanced mathematical modelling in order to design new materials for a range of applications. Three themes will be considered, "Reinforced syntactic foams", "Acoustic metamaterials" and "Thermal metamaterials" and a programme of Public Engagement will illustrate the research to a wide audience. Syntactic foams offer stiff, lightweight materials with strong recoverability, even after significant loading. This theme will investigate the ability of reinforcements including families of 2D materials and other micro and nano fillers in order to enhance stiffness whilst maintaining weight and recoverability. Iteration between models and experiments will ensure that optimise properties are determined. Applications are in marine structures, although a very well-publicised use of syntactic foams was in the football used in the 2006 world cup!Acoustic metamaterials are providing us with new way to manipulate sound. This theme builds on the recent work of the principal investigator's team where, together with an industrial partner he developed and subsequently built microstructured materials that were able to simultaneously slow down sound and also ensure that sound could penetrate the structure. This is a highly non-trivial task and the realisation of such a medium means that it can now potentially be employed in applications where it is important to manipulate sound. Classical examples are in sound attenuation devices, which using this approach could be made more compact. This theme will therefore look to better the designs using more complex microstructures and utilise the medium in more complex geometries. Thermal metamaterials are new media that look to manipulate heat flow and temperature fields. Research so been to direct thermal fields so that regions of space fare protected from high temperatures. In many applications associated with thermal efficiency, it is important to ensure uniform temperature distributions in electronic devices or regions of space within those devices. This is difficult to achieve in complex geometries. This project will look to design and realise new thermal metamaterials whose aim is to be deployed in specific complex geometries in order to ensure thermal uniformity and therefore enhanced heat dissipation and thus improved energy efficiency.The public engagement theme will use results from the original Fellowship of the PI, together with new results from the Extension in order to devise a programme of public engagement with the specific remit of widening participation in Mathematics, Science and Engineering. This will be achieved by devising talks and events aimed at School children, using stands and exhibitions at Science fairs, national competitions and web and social media presence in order to reach out to as broad a community as possible. This inter-disciplinary project is ideal for this in the sense that it sits many academic fields, with its core in Applied Mathematics but employing ideas from Materials Science, Chemistry, Engineering and Physics in order to achieve its goals.
这是该奖学金的延伸:“NEMESIS”(工程科学和工业领域材料建模新数学)。先进材料是现代技术的核心,也是许多生活质量改善的前沿。提高材料性能的关键是深刻理解微观结构与宏观性能之间的联系。这需要各种各样的科学,包括理论建模,计算模拟和实验。该研究金扩展项目位于这些方法的三点,主要使用团队的经验,特别是在高级数学建模方面,以便为一系列应用设计新材料。会议将考虑三个主题:“增强复合泡沫”、“声学超材料”和“热超材料”,以及一个公众参与计划,向广大观众展示研究成果。句法泡沫提供坚硬,轻质材料,具有很强的可恢复性,即使在显著加载后。本主题将研究增强材料的能力,包括二维材料家族和其他微纳米填料,以提高刚度,同时保持重量和可恢复性。模型和实验之间的迭代将确保确定最优属性。虽然句法泡沫在2006年世界杯足球比赛中使用得很好,但它的应用也在海洋结构中。声学超材料为我们提供了操纵声音的新方法。这个主题建立在首席研究员团队最近的工作基础上,在那里,他与一个工业合作伙伴一起开发并随后建造了微结构材料,这种材料能够同时减慢声音,并确保声音能够穿透结构。这是一项非常重要的任务,这种媒介的实现意味着它现在可以潜在地用于处理声音的应用中。典型的例子是声音衰减装置,使用这种方法可以使其更紧凑。因此,这个主题将着眼于更好的设计,使用更复杂的微观结构,并在更复杂的几何形状中利用介质。热超材料是一种旨在控制热流和温度场的新型介质。研究人员一直在引导热场,以保护太空区域免受高温的影响。在许多与热效率相关的应用中,确保电子设备或这些设备内空间区域的均匀温度分布是很重要的。这在复杂的几何形状中很难实现。该项目将着眼于设计和实现新的热超材料,其目标是在特定的复杂几何形状中部署,以确保热均匀性,从而增强散热,从而提高能源效率。公众参与主题将使用原始PI奖学金的成果,以及扩展项目的新成果,以设计一个公众参与计划,其具体职责是扩大数学、科学和工程的参与。这将通过设计针对在校儿童的讲座和活动、利用科学博览会的展台和展览、全国竞赛以及网络和社交媒体的存在来实现,以便尽可能广泛地接触到一个社区。这个跨学科项目是理想的,因为它涉及许多学术领域,以应用数学为核心,但采用材料科学,化学,工程和物理的思想来实现其目标。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A proof that multiple waves propagate in ensemble-averaged particulate materials.
多波在系综平均颗粒材料中传播的证明。
  • DOI:
    10.17863/cam.44056
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gower A
  • 通讯作者:
    Gower A
Optimal design of phononic media through genetic algorithm-informed pre-stress for the control of antiplane wave propagation
  • DOI:
    10.1016/j.eml.2020.100896
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    De Pascalis, Riccardo;Donateo, Teresa;Parnell, William J.
  • 通讯作者:
    Parnell, William J.
On the thermodynamic consistency of Quasi-linear viscoelastic models for soft solids
  • DOI:
    10.1016/j.mechrescom.2020.103648
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Berjamin, Harold;Destrade, Michel;Parnell, William J.
  • 通讯作者:
    Parnell, William J.
A unified framework for linear thermo-visco-elastic wave propagation including the effects of stress-relaxation
线性热粘弹性波传播的统一框架,包括应力松弛的影响
Deeply subwavelength giant monopole elastodynamic metacluster resonators.
深层次波长巨型单极弹性动力学荟萃分子谐振器。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Parnell其他文献

William Parnell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Parnell', 18)}}的其他基金

The Princess and the Pea: Mathematical Design of Neutral Inclusions and their Fabrication
公主与豌豆:中性包裹体的数学设计及其制造
  • 批准号:
    EP/V049488/1
  • 财政年份:
    2021
  • 资助金额:
    $ 114.28万
  • 项目类别:
    Research Grant
Maths Research Associates 2021 Manchester
数学研究助理 2021 曼彻斯特
  • 批准号:
    EP/W522466/1
  • 财政年份:
    2021
  • 资助金额:
    $ 114.28万
  • 项目类别:
    Research Grant
NEMESIS: NEw Mathematics for Materials Modelling in the Engineering Sciences and Industrial Sectors
NEMESIS:工程科学和工业领域材料建模的新数学
  • 批准号:
    EP/L018039/1
  • 财政年份:
    2014
  • 资助金额:
    $ 114.28万
  • 项目类别:
    Fellowship
Elastic, acoustic and water wave propagation through inhomogeneous media
通过非均匀介质的弹性波、声波和水波传播
  • 批准号:
    EP/G064512/1
  • 财政年份:
    2010
  • 资助金额:
    $ 114.28万
  • 项目类别:
    Research Grant
The influence of nonlinear pre-stress on wave propagation through viscoelastic composites.
非线性预应力对粘弹性复合材料中波传播的影响。
  • 批准号:
    EP/H050779/1
  • 财政年份:
    2010
  • 资助金额:
    $ 114.28万
  • 项目类别:
    Research Grant
Mathematical techniques for the assessment of damage and nonlinear behaviour in bone
评估骨损伤和非线性行为的数学技术
  • 批准号:
    EP/H010114/1
  • 财政年份:
    2010
  • 资助金额:
    $ 114.28万
  • 项目类别:
    Research Grant

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Development of Novel High-Performance Carbon Sink Concrete Materials Using Sustainable Multifunctional Hybrid Additives
职业:使用可持续多功能混合添加剂开发新型高性能碳汇混凝土材料
  • 批准号:
    2335878
  • 财政年份:
    2024
  • 资助金额:
    $ 114.28万
  • 项目类别:
    Standard Grant
Fermentation and strain development for the manufacturing of novel, high-performance, compostable and recyclable hetero-aromatic bioplastic monomers for the packaging industry (BioMonoMet)
用于制造包装行业新型、高性能、可堆肥和可回收的杂芳族生物塑料单体的发酵和菌株开发 (BioMonoMet)
  • 批准号:
    10036547
  • 财政年份:
    2023
  • 资助金额:
    $ 114.28万
  • 项目类别:
    Collaborative R&D
Development of novel ladder-type pi-frameworks and high performance organic semiconducting materials.
新型梯型π骨架和高性能有机半导体材料的开发。
  • 批准号:
    23K04878
  • 财政年份:
    2023
  • 资助金额:
    $ 114.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of novel high-performance fire suppressants via synthetic chemistry and fire-safety engineering approaches
通过合成化学和消防安全工程方法开发新型高性能灭火剂
  • 批准号:
    22K04614
  • 财政年份:
    2022
  • 资助金额:
    $ 114.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of prediction for novel aftertreatment performance of methane slip using active site model of methane oxidation catalyst
使用甲烷氧化催化剂活性位点模型开发新型甲烷逃逸后处理性能预测
  • 批准号:
    22K14436
  • 财政年份:
    2022
  • 资助金额:
    $ 114.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a novel high-performance micromachined resonator for lung cancer detection
开发用于肺癌检测的新型高性能微机械谐振器
  • 批准号:
    580718-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 114.28万
  • 项目类别:
    University Undergraduate Student Research Awards
Polymerisation method development for the manufacturing of novel, high-performance, compostable and recyclable hetero-aromatic bioplastics for the packaging industry (BioPolyMet) - Resilience fund
用于制造包装行业新型、高性能、可堆肥和可回收的杂芳族生物塑料的聚合方法开发 (BioPolyMet) - 弹性基金
  • 批准号:
    10023567
  • 财政年份:
    2021
  • 资助金额:
    $ 114.28万
  • 项目类别:
    Collaborative R&D
Development of novel materials for high performance aluminum batteries
高性能铝电池新型材料的开发
  • 批准号:
    561963-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 114.28万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of Novel Miniaturized Separation Media with Braided High Performance Synthetic Filaments
新型小型化编织高性能合成丝分离介质的开发
  • 批准号:
    21K05110
  • 财政年份:
    2021
  • 资助金额:
    $ 114.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and validation of novel bioactive biodegradable metals for high performance biomaterials
用于高性能生物材料的新型生物活性可生物降解金属的开发和验证
  • 批准号:
    RGPIN-2017-04274
  • 财政年份:
    2021
  • 资助金额:
    $ 114.28万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了