Modern Linear Algebra for PDE-Constrained Optimisation Models for Huge-Scale Data Analysis

用于大规模数据分析的偏微分方程约束优化模型的现代线性代数

基本信息

  • 批准号:
    EP/S027785/1
  • 负责人:
  • 金额:
    $ 29.51万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

What accurately describes such real-world processes as fluid flow mechanisms, or chemical reactions for the manufacture of industrial products? What mathematical formalism enables practitioners to guarantee a specific physical behaviour or motion of a fluid, or to maximise the yield of a particular substance? The answer lies in the important scientific field of PDE-constrained optimisation.PDEs are mathematical tools called partial differential equations. They enable us to model and predict the behaviour of a wide range of real-world physical systems. From the optimisation point-of-view, a particularly important set of such problems are those in which the dynamics may be controlled in some desirable way, for instance by applying forces to a domain in which fluid flow takes place, or inserting chemical reactants at certain rates. By influencing a system in this way, we are able to generate an optimised outcome of a real-world process. It is hence essential to study and understand PDE-constrained optimisation problems.The possibilities offered by such problems are immense, influencing groundbreaking research in applied mathematics, engineering, and the experimental sciences. Crucial real-world applications for such problems arise in fluid dynamics, chemical and biological mechanisms, weather forecasting, image processing including medical imaging, financial markets and option pricing, and many others. Although a great deal of theoretical work has been undertaken for such problems, it has only been in the past decade or so that a focus has been placed on solving them accurately and robustly on a computer, by tackling the matrix systems of equations which result. Much of the research underpinning this proposal involves constructing powerful iterative methods accelerated by 'preconditioners', which are built by approximating the relevant matrix in an accurate way, such that the preconditioner is much cheaper to apply than solving the matrix system itself. Applying our methodology can then open the door to scientific challenges which were previously out of reach, by only storing and working with matrices that are tiny compared to the systems being solved overall.Recently, PDE-constrained optimisation problems have found crucial applicability to problems from data analysis. This is due to the vast computing power that is available today, meaning that there exists the potential to store and work with huge-scale datasets arising from commercial records, online news sites, or health databases, for example. In turn, this has led to a number of applications of data-driven processes being successfully modelled by optimisation problems constrained by PDEs. It is essential that algorithms for solving problems from these applications of data science can keep pace with the explosion of data which arises from real-world processes. Our novel numerical methods for solving the resulting huge-scale matrix systems aim to do exactly this.In this project, we will examine PDE-constrained optimisation problems under the presence of uncertain data, image processing problems, bioinformatics applications, and deep learning processes. For each problem, we will devise state-of-the-art mathematical models to describe the process, for which we will then construct potent iterative solvers and preconditioners to tackle the resulting matrix systems. Our new algorithms will be validated theoretically and numerically, whereupon we will then release an open source code library to maximise their applicability and impact on modern optimisation and data science problems.
什么才能准确地描述诸如流体流动机制或工业产品制造的化学反应等真实世界的过程?什么样的数学形式能使实践者保证流体的特定物理行为或运动,或使特定物质的产量最大化?问题的答案在于偏微分方程约束优化这一重要的科学领域。偏微分方程是一种叫做偏微分方程的数学工具。它们使我们能够建模和预测各种现实世界物理系统的行为。从优化的观点来看,一组特别重要的这样的问题是可以以某种期望的方式控制动力学的那些问题,例如通过向流体流动发生的区域施加力,或者以一定的速率插入化学反应物。通过以这种方式影响系统,我们能够生成现实世界过程的优化结果。因此,研究和理解偏微分方程约束优化问题是非常必要的,它所提供的可能性是巨大的,影响着应用数学、工程和实验科学领域的突破性研究。这些问题的关键现实世界应用出现在流体动力学,化学和生物机制,天气预报,图像处理,包括医学成像,金融市场和期权定价,以及许多其他领域。虽然大量的理论工作已经进行了这样的问题,它只是在过去的十年左右,重点放在解决他们的准确性和鲁棒性的计算机上,通过处理矩阵方程组的结果。支持这一提议的大部分研究都涉及构建由“预条件子”加速的强大迭代方法,这些方法是通过以准确的方式逼近相关矩阵来构建的,因此预条件子的应用比求解矩阵系统本身便宜得多。应用我们的方法,然后可以打开大门,以前遥不可及的科学挑战,只存储和工作的矩阵是微小的系统相比,整体solved.Recently,偏微分方程约束优化问题已发现关键的适用性,从数据分析的问题。这是由于当今可用的巨大计算能力,这意味着存在存储和处理来自商业记录、在线新闻网站或健康数据库等的大规模数据集的潜力。反过来,这导致了许多应用程序的数据驱动的过程被成功地建模由偏微分方程约束的优化问题。解决这些数据科学应用中的问题的算法必须能够跟上现实世界中数据爆炸的速度。在这个项目中,我们将研究不确定数据、图像处理问题、生物信息学应用和深度学习过程下的偏微分方程约束优化问题。对于每个问题,我们将设计最先进的数学模型来描述这个过程,然后我们将构建有效的迭代求解器和预处理器来处理得到的矩阵系统。我们的新算法将在理论和数值上得到验证,然后我们将发布一个开源代码库,以最大限度地提高其适用性和对现代优化和数据科学问题的影响。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
General-purpose preconditioning for regularized interior point methods
  • DOI:
    10.1007/s10589-022-00424-5
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    J. Gondzio;Spyridon Pougkakiotis;J. Pearson
  • 通讯作者:
    J. Gondzio;Spyridon Pougkakiotis;J. Pearson
Parameter-Robust Preconditioning for Oseen Iteration Applied to Stationary and Instationary Navier--Stokes Control
稳态和稳态纳维Oseen迭代的参数鲁棒预处理--斯托克斯控制
Parameter-robust preconditioning for unsteady Stokes control problems
非稳态斯托克斯控制问题的参数鲁棒预处理
  • DOI:
    10.1002/pamm.202100131
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leveque S
  • 通讯作者:
    Leveque S
Pseudospectral methods and iterative solvers for optimization problems from multiscale particle dynamics
  • DOI:
    10.1007/s10543-022-00928-w
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Mildred Aduamoah;B. Goddard;J. Pearson;Jonna C. Roden
  • 通讯作者:
    Mildred Aduamoah;B. Goddard;J. Pearson;Jonna C. Roden
Fast iterative solver for the optimal control of time-dependent PDEs with Crank-Nicolson discretization in time
快速迭代求解器,用于通过 Crank-Nicolson 及时离散化对时间相关偏微分方程进行最优控制
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Pearson其他文献

Programmable Real-Time Magnon Interference in Two Remotely Coupled Magnonic Resonators
两个远程耦合磁振子谐振器中的可编程实时磁振子干涉
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Moojune Song;T. Polakovic;Jinho Lim;Thomas W. Cecil;John Pearson;R. Divan;W. Kwok;U. Welp;Axel Hoffmann;Kab;V. Novosad;Yi Li
  • 通讯作者:
    Yi Li
Radioautography of binding of tritiated diprenorphine to opiate receptors in the rat.
氚化二丙诺啡与大鼠阿片受体结合的放射自显影。
  • DOI:
    10.1016/0024-3205(80)90250-7
  • 发表时间:
    1980
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    John Pearson;L. Brandeis;Eric J. Simon;Jacob M. Hiller
  • 通讯作者:
    Jacob M. Hiller
Australian Genomics: Outcomes of a 5-year national program to accelerate the integration of genomics in healthcare
澳大利亚基因组学:一项为期 5 年加速基因组学在医疗保健中整合的国家计划的成果
  • DOI:
    10.1016/j.ajhg.2023.01.018
  • 发表时间:
    2023-03-02
  • 期刊:
  • 影响因子:
    8.100
  • 作者:
    Zornitza Stark;Tiffany Boughtwood;Matilda Haas;Jeffrey Braithwaite;Clara L. Gaff;Ilias Goranitis;Amanda B. Spurdle;David P. Hansen;Oliver Hofmann;Nigel Laing;Sylvia Metcalfe;Ainsley J. Newson;Hamish S. Scott;Natalie Thorne;Robyn L. Ward;Marcel E. Dinger;Stephanie Best;Janet C. Long;Sean M. Grimmond;John Pearson;Kathryn N. North
  • 通讯作者:
    Kathryn N. North
Glutamine synthetase isoforms in Trientalis europaea: a biochemical and molecular approach
  • DOI:
    10.1023/a:1004728005931
  • 发表时间:
    2000-01-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Giles Parry;Janet Woodall;Sirpa Nuotio;John Pearson
  • 通讯作者:
    John Pearson
Patterns of mRNA for epidermal growth factor receptor and keratin B-2 in normal cervical epithelium and in cervical intraepithelial neoplasia.
正常宫颈上皮和宫颈上皮内瘤变中表皮生长因子受体和角蛋白 B-2 的 mRNA 模式。
  • DOI:
    10.1016/0090-8258(90)90046-n
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Khushbakhat Mittal;John Pearson;Rita I. Demopoulos
  • 通讯作者:
    Rita I. Demopoulos

John Pearson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Pearson', 18)}}的其他基金

Fast Solvers for Real-World PDE-Constrained Optimization
用于现实世界 PDE 约束优化的快速求解器
  • 批准号:
    EP/M018857/2
  • 财政年份:
    2017
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Fellowship
Fast Solvers for Real-World PDE-Constrained Optimization
用于现实世界 PDE 约束优化的快速求解器
  • 批准号:
    EP/M018857/1
  • 财政年份:
    2015
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Fellowship

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
  • 批准号:
    EP/Y030990/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Research Grant
III: Medium: Linear Algebra Operators in Databases to Support Analytic and Machine-Learning Workloads
III:中:数据库中的线性代数运算符支持分析和机器学习工作负载
  • 批准号:
    2312991
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
DMS-EPSRC:Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
  • 批准号:
    2313434
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Developing Virtual Reality-Mediated Representational Tools for Supporting and Enhancing Deep Mathematical Understanding of Linear Algebra Relationships
开发虚拟现实介导的表示工具来支持和增强对线性代数关系的深入数学理解
  • 批准号:
    2315756
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
  • 批准号:
    2309445
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Development of an Inquiry-based curriculum for linear algebra as a subject-specialized course in mathematics teacher training
作为数学教师培训学科专业课程的线性代数探究式课程的开发
  • 批准号:
    23K02415
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
  • 批准号:
    2309446
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152661
  • 财政年份:
    2022
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Exact linear algebra, polynomial systems and applications of computer algebra
精确线性代数、多项式系统及计算机代数应用
  • 批准号:
    RGPIN-2020-04276
  • 财政年份:
    2022
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了