Targeted waveform enhanced plasma microreactor: Engineering Chemistry at the Interface of Microbubbles

靶向波形增强等离子体微反应器:微泡界面的工程化学

基本信息

  • 批准号:
    EP/S031421/1
  • 负责人:
  • 金额:
    $ 124.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

One class of electrochemical reaction are reactions in the plasma state. The PI and his team have been pioneering plasma microreactors that feed directly into microbubbles for the last decade. With the output of the plasma reactor entering the microbubble directly, the maximum activation is retained in the bubble, which then mediates the formation of active species on the microbubble interface. Recently, this approach has been used to catalyse the esterification reaction of free fatty acids to form esters (particularly biodiesel). More than the effectiveness of the plasma activated microbubble reaction, microbubble processing is not limited by surface area of "electrode" in quite the same way. The grand aim of this proposal is to create heterogeneous catalysis capability by tuning the plasma activated species on the gas-liquid interface of microbubbles. Conventional electrochemistry has severe issues around upscaling. Plasma microreactors, particularly those that feed into liquid media as injected microbubbles, are a class of electrochemical reactors that can potentially upscale readily. Microbubbles can have hectares of gas-liquid interface per cubic metre of liquid reactant volume, so if the (plasma)electrochemical reaction can be catalysed on the gas-liquid interface, high throughput reaction rates can be achieved in large volume, continuous flow reactors. Already achieved in pilot plant studies of anaerobic digestion is a bubble surface area flux of 0.15 hectares/sec! If even a fraction of this surface area flux is effective at mediating plasma chemical transformations, the rate of transformation processes should far exceed conventional heterogeneous reactions.This project aims to optimise how the formation of plasma-activated species is coupled to the transient operation of the plasma electronics that create the excited species that eventually react at microbubble gas-liquid interfaces. Preliminary studies show that the composition of an excited air plasma, for instance, can dramatically change with the contacting time in the reactor and the electric field applied. They also suggest that how that electric field is applied in space and time dramatically affects the chemical composition of the plasma, and consequently what chemical reactions dominate the microbubble mediated gas-liquid chemistry. The purpose of this proposal is to characterise this coupling between the time-varying plasma electronics output, as implemented with tuneable electrical engineering design, and the induced chemistry of the plasma and microbubble mediated reaction. The characterisation will be captured in computer models that permit inversion; from the desired chemical outputs, the optimum plasma electronics design, control and operating mode ("the waveform") will be predicted. In the UK plasma chemistry research is vibrant but the work is mainly centred on nuclear science, capactively coupled plasmas with applications to surface treatment (i.e. EP/K018388/1) and medical applications. Globally, several research groups are investigating tailored waveform plasmas more generally but not with specific application to chemical generation on an industrial scale. The proposed closed-loop control of tailored waveform plasma microbubble reactors offers new possibilities to increase efficiency, throughput and scale-up. This, therefore, complements the contributions from these research groups (both national and international) and so will stimulate new research and commercial opportunities. By bringing together experts from the interface of chemical engineering, electrical engineering and mathematics who, together with some eight project partners providing £160k of support, can drive a blue-skies approach to targeted waveform control of plasma reactions (using novel chemical modelling and waveform generator design) while blazing a trail for industrial adaptation to a game-changing approach to chemical production.
一类电化学反应是等离子体状态下的反应。PI和他的团队在过去的十年里一直在开拓直接进入微泡的等离子体微反应器。随着等离子体反应器的输出直接进入微泡,最大活化保留在气泡中,然后介导活性物种在微泡界面上的形成。最近,该方法已被用于催化游离脂肪酸的酯化反应以形成酯(特别是生物柴油)。与等离子体活化微泡反应的有效性相比,微泡处理不以完全相同的方式受到“电极”的表面积的限制。该方案的主要目的是通过调节微泡气液界面上的等离子体活化物种来创造多相催化能力。传统的电化学在放大方面存在严重的问题。等离子体微反应器,特别是那些作为注入的微泡进料到液体介质中的等离子体微反应器,是一类可能容易扩大规模的电化学反应器。微泡可以具有每立方米液体反应物体积的数公顷的气-液界面,因此如果(等离子体)电化学反应可以在气-液界面上催化,则可以在大体积连续流动反应器中实现高通量反应速率。在厌氧消化的中试工厂研究中已经实现了0.15公顷/秒的气泡表面积通量!如果这个表面积通量的一小部分在介导等离子体化学转化中是有效的,那么转化过程的速率应该远远超过传统的非均相反应。该项目旨在优化等离子体活化物种的形成如何与等离子体电子器件的瞬态操作相耦合,这些电子器件产生最终在微泡气液界面反应的激发物种。初步研究表明,例如,激发的空气等离子体的组成可以随着反应器中的接触时间和所施加的电场而显著变化。他们还表明,电场在空间和时间中的作用方式会极大地影响等离子体的化学成分,从而影响微泡介导的气液化学反应。该建议的目的是为了消除随时间变化的等离子体电子输出之间的这种耦合,如可调电气工程设计所实现的,以及等离子体和微泡介导的反应的诱导化学。将在允许反演的计算机模型中捕获表征;根据所需的化学输出,将预测最佳等离子体电子设计、控制和操作模式(“波形”)。在英国等离子体化学研究是充满活力的,但工作主要集中在核科学,电容耦合等离子体与应用表面处理(即EP/K 018388/1)和医疗应用。在全球范围内,几个研究小组正在更广泛地研究定制波形等离子体,但没有具体应用于工业规模的化学生成。提出的闭环控制的定制波形等离子体微泡反应器提供了新的可能性,以提高效率,吞吐量和放大。因此,这补充了这些研究小组(国家和国际)的贡献,因此将刺激新的研究和商业机会。通过汇集来自化学工程,电气工程和数学接口的专家,他们与大约八个项目合作伙伴一起提供16万英镑的支持,可以推动一种蓝天方法来实现等离子体反应的有针对性的波形控制(使用新颖的化学建模和波形发生器设计),同时为工业适应化学生产的改变游戏规则的方法开辟道路。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fully-Integrated Transformer With Asymmetric Primary and Secondary Leakage Inductances for a Bidirectional Resonant Converter
  • DOI:
    10.1109/tia.2023.3252525
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Sajad A. Ansari;J. Davidson;M. Foster
  • 通讯作者:
    Sajad A. Ansari;J. Davidson;M. Foster
Fully-Integrated Solid Shunt Planar Transformer for LLC Resonant Converters
适用于 LLC 谐振转换器的全集成固态并联平面变压器
Improving the Efficiency of High-Temperature Electrolysis of Carbon Dioxide in a Solid Oxide Cell
提高固体氧化物电池中二氧化碳高温电解的效率
  • DOI:
    10.1149/09101.2623ecst
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Call A
  • 通讯作者:
    Call A
Optical density inferences in aqueous solution with embedded micro/nano bubbles: A reminder for the emerging green bubble cleantech
  • DOI:
    10.1016/j.jclepro.2021.126258
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    W. Fan;Pratik Desai;W. Zimmerman;Y. Duan;J. Crittenden;Chunliang Wang;M. Huo
  • 通讯作者:
    W. Fan;Pratik Desai;W. Zimmerman;Y. Duan;J. Crittenden;Chunliang Wang;M. Huo
Inserted-Shunt Integrated Planar Transformer With Low Secondary Leakage Inductance for LLC Resonant Converters
  • DOI:
    10.1109/tie.2022.3165259
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Sajad A. Ansari;J. Davidson;M. Foster
  • 通讯作者:
    Sajad A. Ansari;J. Davidson;M. Foster
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Zimmerman其他文献

The Russian People and Foreign Policy
俄罗斯人民和外交政策
  • DOI:
    10.2307/j.ctt7s0bj
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    William Zimmerman
  • 通讯作者:
    William Zimmerman

William Zimmerman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Zimmerman', 18)}}的其他基金

Enhancing the Methane Generation from Food Waste Anaerobic Digestion Mediated by Fluidic Oscillator Generated Microbubbles
流体振荡器产生的微气泡介导的食物垃圾厌氧消化增强甲烷生成
  • 批准号:
    EP/P030238/1
  • 财政年份:
    2017
  • 资助金额:
    $ 124.8万
  • 项目类别:
    Research Grant
Dual mode plasma UV microreactor for ozonolysis and hydrogenation green chemistry
用于臭氧分解和加氢绿色化学的双模式等离子体紫外微反应器
  • 批准号:
    EP/I027858/1
  • 财政年份:
    2011
  • 资助金额:
    $ 124.8万
  • 项目类别:
    Research Grant
Microbubble cloud generation from fluidic oscillation: underpinning fluid dynamics
流体振荡产生微泡云:支撑流体动力学
  • 批准号:
    EP/I019790/1
  • 财政年份:
    2011
  • 资助金额:
    $ 124.8万
  • 项目类别:
    Research Grant
NSF-NATO Postdoctoral Fellow
NSF-北约博士后研究员
  • 批准号:
    9154465
  • 财政年份:
    1991
  • 资助金额:
    $ 124.8万
  • 项目类别:
    Fellowship Award

相似国自然基金

用卫星测高数据研究内陆水域的水位变化及其与环境的相关性
  • 批准号:
    40304001
  • 批准年份:
    2003
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 124.8万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 124.8万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 124.8万
  • 项目类别:
    Continuing Grant
A RadBackCom Approach to Integrated Sensing and Communication: Waveform Design and Receiver Signal Processing
RadBackCom 集成传感和通信方法:波形设计和接收器信号处理
  • 批准号:
    2335765
  • 财政年份:
    2024
  • 资助金额:
    $ 124.8万
  • 项目类别:
    Standard Grant
Integrated Waveform and Intelligence (IWAI): Physical Layer Solutions to Sustainable 6G
集成波形和智能 (IWAI):可持续 6G 的物理层解决方案
  • 批准号:
    EP/Y000315/1
  • 财政年份:
    2024
  • 资助金额:
    $ 124.8万
  • 项目类别:
    Research Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 124.8万
  • 项目类别:
    Standard Grant
超音波速度測定と波形インバージョンの協同による深部マントル部分溶融仮説の検証
利用超声速度测量和波形反演验证深部地幔部分熔融假说
  • 批准号:
    23H01274
  • 财政年份:
    2023
  • 资助金额:
    $ 124.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SBIR Phase I: A hybrid phasor/waveform simulation tool for the accurate and efficient simulation of large electric power systems with high shares of inverter-based resources
SBIR 第一阶段:一种混合相量/波形仿真工具,用于精确高效地仿真具有高份额逆变器资源的大型电力系统
  • 批准号:
    2321329
  • 财政年份:
    2023
  • 资助金额:
    $ 124.8万
  • 项目类别:
    Standard Grant
Waveform Modelling for Gravitational Wave Astrophysics
引力波天体物理学的波形建模
  • 批准号:
    2268664
  • 财政年份:
    2023
  • 资助金额:
    $ 124.8万
  • 项目类别:
    Studentship
地下構造モニタリングを目指した、地震波による新たな時空間イメージング手法の開発
开发利用地震波进行地下结构监测的新型时空成像方法
  • 批准号:
    22KJ2397
  • 财政年份:
    2023
  • 资助金额:
    $ 124.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了