Circuits, Logic and Symmetry

电路、逻辑和对称性

基本信息

  • 批准号:
    EP/S03238X/1
  • 负责人:
  • 金额:
    $ 46.13万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

The P vs NP conjecture is arguably one of the deepestproblems both in computer science and in science more generally. The conjectureconcerns the very act of problem solving itself, asking if the problems we thinkare hard to solve are in fact hard, or if they admit some clever, efficientlycomputable, solution. Put more technically, can we separate NP, a classcontaining problems believed to be hard, from P, the class of efficientlysolvable problems. In order to make progress we need some understanding of whatit is about a problem that makes it efficiently solvable. In other words, weneed a `nice' characterization of P. This is a challenge because complexityclasses are defined using low-level machine models. These models are hard toanalyse and offer us little insight into the nature of the class. One approachhas been to develop alternative characterizations of complexity classes usinglogics, which we think of as abstract high-level languages, rather thanlow-level machine models. These logics work over abstract representations ofdata, rather than binary strings and, crucially, respect the symmetries inherentin that representation. These logical characterizations offer great insight intowhat pieces of `abstract machinery' (e.g. recursion, counting operations, etc.)are required to solve exactly those problems in a complexity class. We can nowframe our previous question more concretely: Is there a logic that characterizesP?This question is not only closeely related to the P vs NP conjecture, butis itself a deep question about the nature of abstraction. In order to makeprogress we would like to understand what differentiates the computational powerof high-level, abstract languages from that of low-level machines. Recent workhas shown that high-level programs define algorithms with a strong symmetryproperty. In contrast, algorithms given by machine models are characterized by avery weak symmetry condition. It follows that the relationship between thesemodels, and hence the central question of this field, can be reduced to aquestion about the significance of the symmetry condition. In fact, recentresults have enabled us to ask fine-grained questions about the role ofsymmetry, allowing us to use progressive weakenings of the symmetry requirementin order to interpolate between the high-level languages and low-levelmodels.The proposed work connects three fundamental approaches in complexitytheory, by exploring how symmetry plays a role in analysing complexityin each case. They are circuit complexity, descriptive complexity andproof complexity.
无论是在计算机科学中还是在更广泛的科学中,P与NP猜想都可以说是最严重的问题之一。这个猜想关注的是解决问题本身的行为,询问我们认为难以解决的问题是否真的很难解决,或者他们是否接受了一些聪明的、高效的可计算的解决方案。从技术上讲,我们能把NP和P分开吗?NP是一类包含被认为是困难的问题,而P是一类有效可解的问题。为了取得进展,我们需要对这个问题有一些了解,这样才能有效地解决这个问题。换句话说,我们需要对P进行“良好”的描述。这是一个挑战,因为复杂类是使用低级机器模型定义的。这些模型很难分析,也让我们很难洞察班级的性质。一种方法是使用逻辑学开发复杂类的替代特征,我们认为逻辑学是抽象的高级语言,而不是低级机器模型。这些逻辑处理数据的抽象表示,而不是二进制字符串,并且至关重要的是,它们尊重表示中固有的对称性。这些逻辑特征提供了很好的洞察力,以了解需要哪些“抽象机械”(例如,递归、计数操作等)来准确地解决复杂类中的那些问题。现在我们可以更具体地框架我们前面的问题:是否存在表征P的逻辑?这个问题不仅与P与NP猜想密切相关,而且本身是一个关于抽象性质的深层次问题。为了取得进展,我们想要了解高级、抽象语言的计算能力与低级机器的计算能力的区别。最近的工作表明,高级程序定义的算法具有很强的对称性。相比之下,机器模型给出的算法具有一个非常弱的对称性条件。因此,这些模型之间的关系,以及这一领域的中心问题,可以归结为关于对称条件的意义的问题。事实上,最近的结果使我们能够提出关于对称性作用的细粒度问题,使我们能够使用对称性所需的渐进弱化来在高级语言和低级模型之间进行内插。所提出的工作通过探索对称性在每种情况下如何在分析复杂性中发挥作用,将复杂性理论中的三种基本方法联系在一起。它们是电路复杂性、描述复杂性和证明复杂性。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Power of Symmetric Linear Programs
论对称线性规划的威力
  • DOI:
    10.1109/lics.2019.8785792
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Atserias A
  • 通讯作者:
    Atserias A
Symmetric Arithmetic Circuits
对称算术电路
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anuj Dawar
  • 通讯作者:
    Anuj Dawar
Approximations of Isomorphism and Logics with Linear-Algebraic Operators
同构近似和线性代数算子逻辑
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anuj Dawar
  • 通讯作者:
    Anuj Dawar
Definable inapproximability: new challenges for duplicator
可定义的不近似性:复印机的新挑战
Cohomology in Constraint Satisfaction and Structure Isomorphism
约束满足与结构同构中的上同调
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adam Ó Conghaile
  • 通讯作者:
    Adam Ó Conghaile
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anuj Dawar其他文献

International Colloquium on Automata, Languages and Programming (ICALP 2020)
  • DOI:
    10.1007/s00224-024-10185-9
  • 发表时间:
    2024-07-16
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Anuj Dawar
  • 通讯作者:
    Anuj Dawar
Approximation Schemes for First-Order Definable Optimisation Problems
一阶可定义优化问题的近似方案
Generalising automaticity to modal properties of finite structures
  • DOI:
    10.1016/j.tcs.2007.03.048
  • 发表时间:
    2007-06-12
  • 期刊:
  • 影响因子:
  • 作者:
    Anuj Dawar;Stephan Kreutzer
  • 通讯作者:
    Stephan Kreutzer
Backtracking games and inflationary fixed points
  • DOI:
    10.1016/j.tcs.2005.10.030
  • 发表时间:
    2006-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Anuj Dawar;Erich Grädel;Stephan Kreutzer
  • 通讯作者:
    Stephan Kreutzer

Anuj Dawar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anuj Dawar', 18)}}的其他基金

Limits of Symmetric Computation
对称计算的限制
  • 批准号:
    EP/X028259/1
  • 财政年份:
    2023
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Research Grant
Resources and co-resources: a junction between semantics and descriptive complexity
资源和共同资源:语义和描述复杂性之间的结合点
  • 批准号:
    EP/T007257/1
  • 财政年份:
    2019
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Research Grant
Descriptive Complexity with Algebraic Operators
使用代数运算符描述复杂性
  • 批准号:
    EP/H026835/1
  • 财政年份:
    2010
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Research Grant

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Standard Grant
Conference: Southeastern Logic Symposium
会议:东南逻辑研讨会
  • 批准号:
    2401437
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Continuing Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
  • 批准号:
    2339723
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Introducing Quantum Logic Spectroscopy to Greater Southern Nevada as a Vital Quantum Control and Information Process Method
RII Track-4:NSF:将量子逻辑光谱作为重要的量子控制和信息处理方法引入内华达州南部
  • 批准号:
    2327247
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Standard Grant
2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
  • 批准号:
    BB/Y000234/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Research Grant
Travel: Student Travel Support for Logic Mentoring Workshops 2024
旅行:2024 年逻辑辅导研讨会的学生旅行支持
  • 批准号:
    2408942
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Standard Grant
Enriched Categorical Logic
丰富的分类逻辑
  • 批准号:
    EP/X027139/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Fellowship
SHF: Small: Game Logic Programming
SHF:小:游戏逻辑编程
  • 批准号:
    2346619
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了