Graphene Aerogel for Super Lightweight High-Performance Polymer Electrolyte Fuel Cells
用于超轻高性能聚合物电解质燃料电池的石墨烯气凝胶
基本信息
- 批准号:EP/S032886/1
- 负责人:
- 金额:$ 27.36万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Polymer electrolyte fuel cells (PEFCs), which produce electricity with near-zero pollution, have attracted significant attention as a sustainable power supply system. The development of fuel cell and hydrogen economy align with the scopes of Industrial Strategy: building a Britain fit for the future, Department for Business, Energy & Industrial Strategy, November 2017 and Road to Zero, Department for Transport, Office for Low Emission Vehicles, July 2018. This will help improve the air we breathe, support the shift to clean growth, and help the UK to seize new economic opportunities. Currently, fuel cells are used successfully in automobile, distributed/stationary and portable power generation applications. However, to improve its specific power and extend hydrogen FCs' wider applications e.g. unmanned flying vehicles (UAVs) and drones, super light-weight FCs technology will be required. Recent research has revealed the feasibility of using graphene aerogel (GA) as electrodes for electrochemical devices. Its high conductivity, high porosity and high surface area enable its applications of being gas diffusion layer (GDL), flow field plate (FFP), current collector and catalyst support; Super lightweight, flexibility and high compressibility could increase fuel cells mass and volume power densities and lead to alternative shapes. The primary aim of this research is to explore a range of GAs, and use the suitable ones to replace two components in conventional PEFC - GDL and FFP. Traditional FFP is usually made from carbon/polymer composites, graphite plates or stainless steel; GDL is usually made from high porous carbon paper. They are the two components which contribute the majority of the weight to FCs. In conventional FFP, the ribs partially cover the GDL and the resultant gas-transport distance becomes longer than the inter-channel distance. Water tends to saturate at the thinner portion, consequently, oxygen transport is compromised, leading to nonuniform power generation in the FCs. Using GA to replace these parts may deliver extremely lightweight fuel cells, therefore increased power densities can be achieved. GA has porous fine structure, reactant gases will follow diffusion-based mass transfer mechanism, that will lead to an uniform distribution of the reactants. The hydrophobic property and the pore arrangement of GA will enable the water produced in the cathode to leave the electrode, therefore better water management in fuel cells could be achieved. To accommodate graphene aerogel fuel cell (GAFC), a polymer based, simplified FC system will be designed and 3D printed at Northumbria University. The majority of the FC testing work will be carried out using this system. Selected samples will also be tested in the National Physical Laboratory using their state-of-the-art fuel cell test station, which contains a unique reference electrode array that can characterise carbon corrosion in the cathode. Owing to the high elasticity and flexible shape, to further improve the water management, two more types of chamber design will be introduced: tubular shape FC body and parallelogram electrode host. Tubular shape will introduce compression and expansion stress on anode and cathode respectively, therefore the cathode will have expanded pore structure which will further facilitate the air / oxygen mass transport and water to leave the electrodes; parallelogram shape will introduce shear strain on the electrodes, to facilitate water management. Numerical simulation for gas mass transfer, diffusion, heat and water distribution within GAFCs for different structure, shape of GAs and different cell design will be carried out to develop a better understanding of the experimental results. Further studies of GAFC could include temperature management and gas / air cleaning functions.
聚合物电解质燃料电池(PEFC)以近乎零污染的方式产生电力,作为可持续电源系统引起了人们的广泛关注。燃料电池和氢经济的发展与工业战略的范围保持一致:建立一个适合未来的英国,商业,能源和工业战略部,2017年11月和零排放之路,交通部,低排放车辆办公室,2018年7月。这将有助于改善我们呼吸的空气,支持向清洁增长的转变,并帮助英国抓住新的经济机遇。目前,燃料电池已成功应用于汽车、分布式/固定式和便携式发电应用。然而,为了提高其比功率并扩展氢燃料电池的更广泛应用,例如无人驾驶飞行器(UAV)和无人机,将需要超轻量燃料电池技术。最近的研究已经揭示了使用石墨烯气凝胶(GA)作为电化学装置的电极的可行性。其高导电性、高孔隙率和高表面积使其能够用作气体扩散层(GDL)、流场板(FFP)、集流体和催化剂载体;超轻质、柔性和高压缩性可以增加燃料电池的质量和体积功率密度,并导致替代形状。本研究的主要目的是探索一系列的气体发生器,并使用合适的气体发生器来替代传统PEFC中的两种组分- GDL和FFP。传统的FFP通常由碳/聚合物复合材料、石墨板或不锈钢制成; GDL通常由高多孔碳纸制成。它们是占FC重量大部分的两种组分。在传统的FFP中,肋部分地覆盖GDL,并且所得的气体传输距离变得比通道间距离长。水倾向于在较薄的部分饱和,因此,氧气输送受到损害,导致FC中的发电不均匀。使用GA来替换这些部件可以提供极轻的燃料电池,因此可以实现增加的功率密度。GA具有多孔精细结构,反应气体将遵循基于扩散的传质机制,这将导致反应物的均匀分布。GA的疏水性和孔的排列将使在阴极中产生的水离开电极,因此可以实现更好的燃料电池中的水管理。为了适应石墨烯气凝胶燃料电池(GAFC),诺森比亚大学将设计和3D打印一种基于聚合物的简化FC系统。大部分FC测试工作将使用该系统进行。选定的样品还将在国家物理实验室使用其最先进的燃料电池测试站进行测试,该测试站包含一个独特的参比电极阵列,可以防止阴极中的碳腐蚀。由于高弹性和灵活的形状,为了进一步改善水管理,将引入两种类型的腔室设计:管状FC主体和双电极主机。管状形状将分别在阳极和阴极上引入压缩应力和膨胀应力,因此阴极将具有膨胀的孔结构,这将进一步促进空气/氧气质量传输和水离开电极;管状形状将在电极上引入剪切应变,以促进水管理。为了更好地理解实验结果,将对不同结构、气体发生器形状和不同单元设计的气体燃料电池内的气体传质、扩散、热和水分布进行数值模拟。GAFC的进一步研究可能包括温度管理和气体/空气清洁功能。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cobalt nickel boride nanocomposite as high-performance anode catalyst for direct borohydride fuel cell
- DOI:10.1016/j.ijhydene.2021.02.064
- 发表时间:2021-04-17
- 期刊:
- 影响因子:7.2
- 作者:Duan, Yu-e;Li, Sai;Liu, Terence Xiaoteng
- 通讯作者:Liu, Terence Xiaoteng
Multi-core-shell-structured LiFePO4@Na3V2(PO4)3@C composite for enhanced low-temperature performance of lithium-ion batteries
- DOI:10.1007/s12598-020-01669-x
- 发表时间:2021-01-12
- 期刊:
- 影响因子:8.8
- 作者:Gu, Xing-Xing;Qiao, Shuang;Liu, Tie-Feng
- 通讯作者:Liu, Tie-Feng
Designing graded fuel cell electrodes for proton exchange membrane (PEM) fuel cells with recurrent neural network (RNN) approaches
使用循环神经网络 (RNN) 方法设计用于质子交换膜 (PEM) 燃料电池的分级燃料电池电极
- DOI:10.1016/j.ces.2022.118350
- 发表时间:2023
- 期刊:
- 影响因子:4.7
- 作者:Lei H
- 通讯作者:Lei H
Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol
高效单原子Ni催化糠醛转移加氢制糠醇
- DOI:10.1039/d0ta10838c
- 发表时间:2021-01-14
- 期刊:
- 影响因子:11.9
- 作者:Fan, Yafei;Zhuang, Changfu;Zhu, Guangshan
- 通讯作者:Zhu, Guangshan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Terence Liu其他文献
Engineering few-layer MoS2 and rGO heterostructure composites for high-performance supercapacitors
- DOI:
10.1007/s42114-024-01159-z - 发表时间:
2025-01-07 - 期刊:
- 影响因子:21.800
- 作者:
Yi Zhang;Jing Xu;Shun Lu;Han Li;Taner Yonar;Qingsong Hua;Terence Liu;Yongxing Zhang - 通讯作者:
Yongxing Zhang
Terence Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Modularised Scalable Aerogel Manufacture (MoSAM)
模块化可扩展气凝胶制造 (MoSAM)
- 批准号:
10094157 - 财政年份:2024
- 资助金额:
$ 27.36万 - 项目类别:
Investment Accelerator
Scaled Production of Aerogel-based materials for Commercial Exploitation (SPACE)
用于商业开发的气凝胶基材料的规模生产(SPACE)
- 批准号:
10036764 - 财政年份:2023
- 资助金额:
$ 27.36万 - 项目类别:
Collaborative R&D
Photo-thermal carbon dioxide capture directly from the air using silica / carbon aerogel
使用二氧化硅/碳气凝胶直接从空气中捕获光热二氧化碳
- 批准号:
23KJ0898 - 财政年份:2023
- 资助金额:
$ 27.36万 - 项目类别:
Grant-in-Aid for JSPS Fellows
SBIR Phase II: Scaling of a Rapid Aerogel Insert Manufacturing System for High Performance Windows.
SBIR 第二阶段:扩展高性能窗户的快速气凝胶插入制造系统。
- 批准号:
2303965 - 财政年份:2023
- 资助金额:
$ 27.36万 - 项目类别:
Cooperative Agreement
Bio-fabrication of sustainable functional bacterial cellulose aerogel for building insulation
用于建筑隔热的可持续功能性细菌纤维素气凝胶的生物制造
- 批准号:
EP/X02041X/1 - 财政年份:2023
- 资助金额:
$ 27.36万 - 项目类别:
Research Grant
SBIR Phase I: A unique aerogel-based separator technology for safety and ultrafast charging of batteries
SBIR 第一阶段:独特的基于气凝胶的隔膜技术,可实现电池的安全和超快速充电
- 批准号:
2304448 - 财政年份:2023
- 资助金额:
$ 27.36万 - 项目类别:
Standard Grant
I-Corps: Tunable Porosity Aerogel for Wound-Care Dressing
I-Corps:用于伤口护理敷料的可调孔隙率气凝胶
- 批准号:
2230348 - 财政年份:2022
- 资助金额:
$ 27.36万 - 项目类别:
Standard Grant
Ultra Lightweight Transport Refrigeration Aerogel
超轻量运输制冷气凝胶
- 批准号:
575274-2022 - 财政年份:2022
- 资助金额:
$ 27.36万 - 项目类别:
Alliance Grants
SBIR Phase II: Ultra-Clear and Insulating Aerogel for Energy-Efficient Windows
SBIR 第二阶段:用于节能窗户的超透明隔热气凝胶
- 批准号:
2155248 - 财政年份:2022
- 资助金额:
$ 27.36万 - 项目类别:
Cooperative Agreement
Development of Advanced Building Systems with PCM, VIP, and AEROGEL
使用 PCM、VIP 和 AIRGEL 开发先进建筑系统
- 批准号:
RGPIN-2016-04904 - 财政年份:2022
- 资助金额:
$ 27.36万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




