Aberration-Corrected Scanning Transmission Electron Microscope with atomic resolution spectroscopy under controlled environmental conditions: AC-eSTEM

在受控环境条件下具有原子分辨率光谱的像差校正扫描透射电子显微镜:AC-eSTEM

基本信息

  • 批准号:
    EP/S033394/1
  • 负责人:
  • 金额:
    $ 414.18万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    未结题

项目摘要

Atomistic structural, electronic and chemical models are the basis of modern material science, with data acquired under regular high vacuum conditions by analysis of mainly static specimens. However, the properties and hence functionality of many materials crucially depend on the environmental conditions to which they are exposed. Accordingly, relevant analyses of structure, composition and properties need to be conducted under controlled continuous dynamic conditions and the vision of this project is to enable and fully integrate the capabilities needed to accomplish these goals to understand nanomaterial-environment interactions, and ultimately to create nanomaterials by design. The overarching vision of this proposal is to fill the need for the fully integrated nanomaterials analysis with single atom sensitivity under dynamic process conditions in environmental conditions. The aim is to provide the state of the art tool available to UK research community to address the outstanding materials problems that underpin a number of EPSRC research themes from manufacturing the future to health and environment. Fully in situ and operando operations are needed to ensure the integrity of sample data. In practice this extends from sample synthesis or activation, through the ensuing operations, reactions or other processes or tests. Hence, resources are sought to establish a state-of-the-art, aberration corrected STEM instrument (200 to 40 kV) with 0.08 nm image resolution and comprehensive analytical functions for chemical and electronic state analysis with electron energy loss spectroscopy (EELS), related imaging filter (GIF), direct electron detection, and elemental analysis with a transformational high sensitivity (and acceptance angle) silicon drift detection (SDD) energy dispersive x-ray (EDX) spectrometer. The new instrument will be modified at York to include added unique functionalities, along the lines of the research led by the group. Methods and some hardware will be transferred from the original proof-of-concept and aged (2005) first generation instrument at York. The advantages of the open aperture 'gas-in-microscope' concept promoted at York are expected to be especially significant at the lower accelerating voltages of 80 and 40 kV to be available to reduce damage due to specimen-electron beam interactions. The new instrument and attendant expertise will be organised, actively promoted, operated and managed as a new national capability with connections to the national SuperSTEM and ePSIC laboratories, including CI representation from both organisations, for advice and user guidance and active assistance external promotion and strategic as well as tactical management. Wide networking will add to the framework for organising the new capability but will not exclude more ad hoc bilateral interactions; in part to promote the core science needed at the heart of such an 'organisation'. The scientific benefits of the proposed centre for excellence in environmental aberration corrected STEM will greatly contribute to the current research initiatives in the UK related to nanomaterials for energy applications, information technologies/internet of things, and catalysis. The key contribution will be in fundamental understanding of the nanomaterials environment interactions enables trough atomistic imaging and analysis of the dynamic processes that take place either during material fabrication or in action. The project will make a significant contribution to what the future of the UK and of the world will look like; through better understanding of societal, scientific, economic, and environmental challenges and opportunities.
原子结构、电子和化学模型是现代材料科学的基础,在常规高真空条件下通过分析主要是静态样品获得数据。然而,许多材料的性能和功能性主要取决于它们所暴露的环境条件。因此,需要在受控的连续动态条件下进行结构、组成和性质的相关分析,本项目的愿景是实现并充分整合实现这些目标所需的能力,以了解纳米材料与环境的相互作用,并最终通过设计创造纳米材料。该提案的总体愿景是满足在环境条件下动态工艺条件下对具有单原子灵敏度的完全集成纳米材料分析的需求。其目的是为英国研究界提供最先进的工具,以解决突出的材料问题,这些问题是EPSRC从制造未来到健康和环境的许多研究主题的基础。为了确保样品数据的完整性,需要完全在现场和操作中进行操作。在实践中,这从样品合成或活化延伸到随后的操作、反应或其他过程或测试。因此,寻求资源以建立最先进的畸变校正STEM仪器(200至40 kV),图像分辨率为0.08 nm,具有全面的分析功能,可通过电子能量损失谱(EELS)、相关成像滤波器(GIF)、直接电子检测进行化学和电子状态分析,和元素分析与转换高灵敏度(和接受角)硅漂移检测(SDD)能量色散X射线(EDX)光谱仪。新仪器将在约克进行修改,沿着该小组领导的研究路线增加独特的功能。方法和一些硬件将从约克的原始概念验证和老化(2005年)的第一代仪器转移。在约克推广的开孔“显微镜中的气体”概念的优点预计在80和40 kV的较低加速电压下特别显著,可用于减少由于电子束-电子束相互作用而造成的损害。新仪器和相关专业知识将作为一种新的国家能力进行组织、积极推广、运营和管理,并与国家SuperSTEM和ePSIC实验室建立联系,包括来自两个组织的CI代表,以提供建议和用户指导,并积极协助外部推广和战略以及战术管理。广泛的网络将增加组织新能力的框架,但不会排除更多的特设双边互动;部分是为了促进这种“组织”的核心所需的核心科学。拟议的环境畸变校正STEM卓越中心的科学效益将大大有助于英国目前与纳米材料用于能源应用,信息技术/物联网和催化相关的研究计划。其关键贡献将是对纳米材料环境相互作用的基本了解,从而能够通过原子成像和对材料制造过程或作用过程中发生的动态过程进行分析。该项目将通过更好地了解社会,科学,经济和环境挑战和机遇,为英国和世界的未来做出重大贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vlado Lazarov其他文献

Van der Waals interfaces: TI/superconductor and semiconductor
范德华接口:TI/超导和半导体
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arsham Ghasemi;Demie Kepaptsoglou;Kenji Nawa;Susannah Speller;Pedro Galindo;Quentin Ramasse;Kohji Nakamura;Thorsten Hesjedal;Vlado Lazarov
  • 通讯作者:
    Vlado Lazarov
希土類金属における有効オンサイトクーロン相互作用の第一原理計算
稀土金属有效现场库仑相互作用的第一性原理计算
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arsham Ghasemi;Demie Kepaptsoglou;Kenji Nawa;Susannah Speller;Pedro Galindo;Quentin Ramasse;Kohji Nakamura;Thorsten Hesjedal;Vlado Lazarov;名和憲嗣,秋山亨,伊藤智徳,中村浩次;名和憲嗣,秋山亨,伊藤智徳,中村浩次
  • 通讯作者:
    名和憲嗣,秋山亨,伊藤智徳,中村浩次
希土類金属における有効オンサイトクーロン相互作用の第一原理的導出と電子構造
稀土金属有效现场库仑相互作用和电子结构的第一性原理推导
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arsham Ghasemi;Demie Kepaptsoglou;Kenji Nawa;Susannah Speller;Pedro Galindo;Quentin Ramasse;Kohji Nakamura;Thorsten Hesjedal;Vlado Lazarov;名和憲嗣,秋山亨,伊藤智徳,中村浩次
  • 通讯作者:
    名和憲嗣,秋山亨,伊藤智徳,中村浩次

Vlado Lazarov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vlado Lazarov', 18)}}的其他基金

Spectroscopic Detection of Magnetic Scattering and Quasiparticles at Atomic Resolution in the Electron Microscope
电子显微镜中原子分辨率的磁散射和准粒子的光谱检测
  • 批准号:
    EP/Z531194/1
  • 财政年份:
    2024
  • 资助金额:
    $ 414.18万
  • 项目类别:
    Research Grant
Half metal oxides: In search for 100% spin polarised materials
半%20金属%20氧化物:%20In%20search%20for%20100%%20spin%20极化%20材料
  • 批准号:
    EP/K013114/1
  • 财政年份:
    2013
  • 资助金额:
    $ 414.18万
  • 项目类别:
    Research Grant
Half-metallic ferromagnets: materials fundamentals for next-generation spintronics
半金属铁磁体:下一代自旋电子学的材料基础
  • 批准号:
    EP/K03278X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 414.18万
  • 项目类别:
    Research Grant

相似海外基金

Equipment: MRI: Track 2 Acquisition of an Analytical Aberration-Corrected Transmission Electron Microscope for Research and Education
设备: MRI:轨道 2 获取用于研究和教育的分析像差校正透射电子显微镜
  • 批准号:
    2320468
  • 财政年份:
    2023
  • 资助金额:
    $ 414.18万
  • 项目类别:
    Standard Grant
Developing an error corrected quantum processor solution for commercial quantum computing
开发用于商业量子计算的纠错量子处理器解决方案
  • 批准号:
    10004857
  • 财政年份:
    2022
  • 资助金额:
    $ 414.18万
  • 项目类别:
    Collaborative R&D
300kV Cs-corrected transmission electron microscope
300kV CS校正透射电子显微镜
  • 批准号:
    466823680
  • 财政年份:
    2022
  • 资助金额:
    $ 414.18万
  • 项目类别:
    Major Research Instrumentation
NSF-BSF: Derived and quantum corrected structures on arithmetic and geometric moduli
NSF-BSF:算术和几何模量的导出和量子校正结构
  • 批准号:
    2200914
  • 财政年份:
    2022
  • 资助金额:
    $ 414.18万
  • 项目类别:
    Continuing Grant
Corrected Registry Entries and the Diagnosis of Sex at Birth
更正的登记条目和出生时性别的诊断
  • 批准号:
    2760491
  • 财政年份:
    2022
  • 资助金额:
    $ 414.18万
  • 项目类别:
    Studentship
CAREER: First Principles Design of Error-Corrected Solid-State Quantum Repeaters
职业:纠错固态量子中继器的第一原理设计
  • 批准号:
    2246394
  • 财政年份:
    2022
  • 资助金额:
    $ 414.18万
  • 项目类别:
    Continuing Grant
3D Free-Breathing Fat and Iron Corrected T1 Mapping
3D 自由呼吸脂肪和铁校正 T1 映射
  • 批准号:
    10432272
  • 财政年份:
    2022
  • 资助金额:
    $ 414.18万
  • 项目类别:
3D Free-Breathing Fat and Iron Corrected T1 Mapping
3D 自由呼吸脂肪和铁校正 T1 映射
  • 批准号:
    10831651
  • 财政年份:
    2022
  • 资助金额:
    $ 414.18万
  • 项目类别:
An Aberration Corrected STEM with Integrated Science Driven AI to Quantify Dynamic Functionality in Advanced Energy Technologies and Biomaterials
利用综合科学驱动的 AI 进行像差校正 STEM,以量化先进能源技术和生物材料的动态功能
  • 批准号:
    EP/V05385X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 414.18万
  • 项目类别:
    Research Grant
Identifying low dose measurement error corrected effects of multiple pollutants using causal modeling
使用因果模型识别多种污染物的低剂量测量误差校正效应
  • 批准号:
    10634894
  • 财政年份:
    2021
  • 资助金额:
    $ 414.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了