Novel computational routes to materials discovery
材料发现的新计算途径
基本信息
- 批准号:EP/T000163/1
- 负责人:
- 金额:$ 87.45万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Understanding the behaviour of materials on the atomic scale is fundamental to modern science and technology, because most properties and phenomena are ultimately controlled by the details of atomistic processes. During the past decades computer simulations on the atomistic level became a powerful tool in modern chemistry, augmenting experiments, by making initial predictions, aiding studies under extreme conditions or providing an atomistic insight into mechanisms. For example, predicting the state of matter in planetary interiors or in nuclear reactors where measurements are impossible or dangerous, or pinpointing stable structures and properties efficiently, such as for trial drugs or alloys, reduces the amount of expensive and time-consuming experiments.One of the major fields where computer simulations became widely used is material science, studying phase transitions and phase diagrams. A phase diagram shows the properties of a given material at specific conditions, for example, tells whether a substance is found as gas, liquid or solid at a particular temperature and pressure, or at a particular composition in case of a multicomponent system. It also shows when these phases transform into each other, corresponding to phase transitions. It is of great technological importance to have a complete picture of the phase diagram, and computational tools are widely employed to enable this. Nonetheless, the main difficulty in using computer simulations is that the number of possible ways atoms can be arranged in space is enormous, and no technique is capable of considering all of them, hence we need importance sampling. A plethora of computational techniques exist, however, these are usually problem specific and rely on prior knowledge of the atomic structure, limiting their predictive power. I have been developing a novel computational technique, nested sampling (NS), which addresses these challenges from a new perspective: it automatically generates all relevant atomic configurations (a small subset of all possible variations), and determines their relative stability, offering complete thermodynamic information without any advance knowledge of the material, except its composition.I have already shown how NS can be used to calculate the phase diagram of metals and alloys, in an automated way, and my aim is to extend its applicability to a broader range of problems: augment crystal structure prediction studies (highly relevant in developing pharmaceuticals), a novel application in calculating spectroscopic properties (for accurate measurements of composition in climate science and astrochemistry), and develop strategies to determine and improve the reliability of potential models (the mathematical formulation of atomic interactions) benefiting computational research in a wide context.
在原子尺度上理解材料的行为是现代科学技术的基础,因为大多数性质和现象最终都是由原子过程的细节控制的。在过去的几十年里,在原子水平上的计算机模拟成为现代化学的一个强大工具,通过做出初步预测,辅助极端条件下的研究,或提供对机制的原子洞察力,增加了实验。例如,预测行星内部或核反应堆中不可能或危险测量的物质状态,或有效地确定稳定的结构和性质,例如用于试验药物或合金,减少了昂贵和耗时的实验数量。计算机模拟得到广泛应用的主要领域之一是材料科学,研究相变和相图。相图显示了给定材料在特定条件下的性质,例如,在特定的温度和压力下,或者在多组分系统的特定组成下,告诉我们一种物质是气体、液体还是固体。它还显示了这些相何时相互转化,对应于相变。拥有相图的完整图像在技术上是非常重要的,并且计算工具被广泛地用于实现这一点。尽管如此,使用计算机模拟的主要困难是原子在空间中可能排列的方式的数量是巨大的,没有任何技术能够考虑到所有的方式,因此我们需要重要采样。虽然存在大量的计算技术,但这些技术通常是针对特定问题的,并且依赖于对原子结构的先验知识,这限制了它们的预测能力。我一直在开发一种新的计算技术,嵌套采样(NS),它从一个新的角度解决了这些挑战:它自动生成所有相关的原子构型(所有可能变化的一小部分),并确定它们的相对稳定性,提供完整的热力学信息,而不需要任何材料的预先知识,除了它的成分。我已经展示了如何使用NS以自动方式计算金属和合金的相图,我的目标是将其适用性扩展到更广泛的问题:增加晶体结构预测研究(与开发药物高度相关),计算光谱特性的新应用(用于气候科学和天体化学中成分的精确测量),并制定策略以确定和提高潜在模型(原子相互作用的数学公式)的可靠性,从而在广泛的背景下有利于计算研究。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Insight into liquid polymorphism from the complex phase behaviour of a simple model
从简单模型的复杂相行为洞察液体多晶型
- DOI:10.48550/arxiv.2103.03406
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Bartók A
- 通讯作者:Bartók A
A general-purpose machine learning Pt interatomic potential for an accurate description of bulk, surfaces and nanoparticles
通用机器学习 Pt 原子间势,可准确描述块体、表面和纳米颗粒
- DOI:10.48550/arxiv.2301.11639
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kloppenburg J
- 通讯作者:Kloppenburg J
Insight into Liquid Polymorphism from the Complex Phase Behavior of a Simple Model.
从简单模型的复杂相行为洞察液体多晶型。
- DOI:10.1103/physrevlett.127.015701
- 发表时间:2021
- 期刊:
- 影响因子:8.6
- 作者:Bartók AP
- 通讯作者:Bartók AP
Nested sampling for physical scientists
- DOI:10.1038/s43586-022-00121-x
- 发表时间:2022-05-26
- 期刊:
- 影响因子:0
- 作者:Ashton, Greg;Bernstein, Noam;Yallup, David
- 通讯作者:Yallup, David
A general-purpose machine learning Pt interatomic potential for an accurate description of bulk, surfaces, and nanoparticles.
通用机器学习 Pt 原子间势,可准确描述块体、表面和纳米粒子。
- DOI:10.1063/5.0143891
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kloppenburg J
- 通讯作者:Kloppenburg J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Livia Bartok-Partay其他文献
Livia Bartok-Partay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
物体运动对流场扰动的数学模型研究
- 批准号:51072241
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
- 批准号:
10096988 - 财政年份:2024
- 资助金额:
$ 87.45万 - 项目类别:
EU-Funded
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 87.45万 - 项目类别:
EU-Funded
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 87.45万 - 项目类别:
EU-Funded
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
- 批准号:
10090067 - 财政年份:2024
- 资助金额:
$ 87.45万 - 项目类别:
Collaborative R&D
Computational Tropical Geometry and its Applications
计算热带几何及其应用
- 批准号:
MR/Y003888/1 - 财政年份:2024
- 资助金额:
$ 87.45万 - 项目类别:
Fellowship
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
- 批准号:
EP/X033244/1 - 财政年份:2024
- 资助金额:
$ 87.45万 - 项目类别:
Research Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319895 - 财政年份:2024
- 资助金额:
$ 87.45万 - 项目类别:
Standard Grant
MFB: Better Homologous Folding using Computational Linguistics and Deep Learning
MFB:使用计算语言学和深度学习更好的同源折叠
- 批准号:
2330737 - 财政年份:2024
- 资助金额:
$ 87.45万 - 项目类别:
Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
- 批准号:
2348712 - 财政年份:2024
- 资助金额:
$ 87.45万 - 项目类别:
Standard Grant
REU Site: Computational Number Theory
REU 网站:计算数论
- 批准号:
2349174 - 财政年份:2024
- 资助金额:
$ 87.45万 - 项目类别:
Continuing Grant