An Artificial Ribosome

人工核糖体

基本信息

  • 批准号:
    EP/T000562/1
  • 负责人:
  • 金额:
    $ 84.63万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

We propose to create an artificial ribosome.Life depends on precise, sequence-controlled polymer synthesis. The ribosome is the natural molecular machine that 'reads' information stored in genes and 'writes' the corresponding proteins by concatenating molecular building blocks chosen from a small set of natural amino acids. The creation of artificial machinery capable of translating a genetic code into a completely synthetic sequence-defined polymer would have profound implications. Directed evolution by molecular machinery working on reaction- and time-scales orders of magnitude smaller than currently possible would allow exploration of vast new regions of chemical space and lead to the development of non-natural polymers that match and extend the functionalities of peptides and proteins. Nanomachines capable of programmed product synthesis in situ could realize the longstanding promise of nanotechnology to deliver 'smart' therapeutics. On a more fundamental level, we could recreate complex biological behaviours such as gene regulation, bringing the creation of artificial living systems -the grand challenge of synthetic biology- a step closer. We will combine our expertise in DNA nanotechnology and polymer chemistry to build artificial ribosomes capable of translating a nucleic acid genetic code into sequence-defined, non-natural polymers. Several groups, including our own, have made progress towards this goal. The ribosome has been 'engineered' to accept unnatural building blocks, but this technique is extremely time-consuming and the pool of building blocks remains limited. Molecular machines synthesised entirely from scratch have been developed that perform sequential chemical synthesis, but the syntheses are laborious and there is no readily readable and rewritable artificial genetic code. A middle ground between these two approaches is to make use of nature's genetic code - DNA - and integrate it with an artificial machine constructed in a modular fashion from simple components. We use DNA nanotechnology, which makes use of the predictable base-pairing of the DNA double helix, to construct these machines. We and others have used this approach to create autonomous molecular machines that can perform sequential chemical synthesis. However, these early attempts have been severely limited by two problems. First, the building blocks used are highly reactive and so degrade to become useless over time. Second, the machines have no way of recognising if a reaction has occurred successfully or not, so often skip intermediate building blocks.In this ambitious programme we will address these issues by developing DNA machines that activate building blocks to become reactive only when they are needed and that are capable of sensing when a reaction has occurred before progressing to the next step. Integrating these two advances will allow us to create an 'artificial ribosome' capable of autonomous, multistep synthesis of sequence-controlled polymers. We will demonstrate some of the potential future applications of this transformative molecular technology by synthesising a functional product, performing multiple syntheses in parallel in the same reaction vessel, and triggering synthesis of particular products in response to different environmental signals.This work will result in significant advances in the areas of molecular machines, synthetic biology and polymer chemistry, and could have numerous practical applications, for example in nucleic acid sensing for point-of-care diagnostics. Through a programme of dissemination, workshops and knowledge exchange we will ensure that our new technologies reach beneficiaries who can make practical use of them.
我们建议制造一种人工核糖体,生命依赖于精确的、序列控制的聚合物合成。核糖体是一种天然的分子机器,它可以“读取”储存在基因中的信息,并通过连接从一小部分天然氨基酸中选择的分子构建块来“写入”相应的蛋白质。能够将遗传密码翻译成完全合成的序列定义聚合物的人工机器的创造将具有深远的意义。通过分子机械在比目前可能的反应和时间尺度小的数量级上工作的定向进化将允许探索化学空间的广阔新区域,并导致非天然聚合物的发展,这些聚合物匹配并扩展了肽和蛋白质的功能。能够原位编程合成产品的纳米机器可以实现纳米技术提供“智能”治疗的长期承诺。在更基本的层面上,我们可以重新创造基因调控等复杂的生物行为,使人工生命系统的创造-合成生物学的巨大挑战-更近一步。我们将联合收割机结合我们在DNA纳米技术和聚合物化学方面的专业知识,构建能够将核酸遗传密码翻译成序列定义的非天然聚合物的人工核糖体。包括我们自己在内的几个团体在实现这一目标方面取得了进展。核糖体已经被“改造”为接受非天然的构建模块,但这种技术非常耗时,构建模块的库仍然有限。完全从头开始合成的分子机器已经被开发出来,可以进行连续的化学合成,但是合成是费力的,并且没有容易阅读和识别的人工遗传密码。这两种方法之间的中间地带是利用自然界的遗传密码- DNA -并将其与由简单组件以模块化方式构建的人造机器相结合。我们使用DNA纳米技术,利用DNA双螺旋的可预测碱基配对来构建这些机器。我们和其他人已经使用这种方法来创建可以执行顺序化学合成的自主分子机器。然而,这些早期的尝试受到两个问题的严重限制。首先,所使用的构建块是高度反应性的,因此随着时间的推移会退化而变得无用。第二,机器无法识别反应是否成功发生,因此经常跳过中间构件。在这个雄心勃勃的计划中,我们将通过开发DNA机器来解决这些问题,这些DNA机器只在需要时激活构件,使其变得具有反应性,并且能够在进行下一步之前感知反应何时发生。整合这两项进展将使我们能够创造一种能够自主、多步合成序列控制聚合物的“人工核糖体”。我们将通过合成功能性产物、在同一反应容器中并行进行多个合成以及响应不同的环境信号触发特定产物的合成来展示这种变革性分子技术的一些潜在未来应用。这项工作将在分子机器、合成生物学和高分子化学领域取得重大进展。并且可以具有许多实际应用,例如用于护理点诊断的核酸传感。我们将通过一项传播、讲习班和知识交流方案,确保我们的新技术能够惠及能够实际使用这些技术的受益者。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A New Architecture for DNA-Templated Synthesis in Which Abasic Sites Protect Reactants from Degradation.
DNA 模板合成的新架构,其中无碱基位点可保护反应物免遭降解。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Turberfield其他文献

Andrew Turberfield的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Turberfield', 18)}}的其他基金

Coordination polymer approach to DNA functionalisation and assembly
DNA 功能化和组装的配位聚合物方法
  • 批准号:
    EP/S015906/1
  • 财政年份:
    2018
  • 资助金额:
    $ 84.63万
  • 项目类别:
    Research Grant
14-ERASynBio BioOrigami
14-ERASynBio 生物折纸
  • 批准号:
    BB/M005739/1
  • 财政年份:
    2014
  • 资助金额:
    $ 84.63万
  • 项目类别:
    Research Grant
Extending the Boundaries of Nucleic Acid Chemistry
拓展核酸化学的界限
  • 批准号:
    BB/J00054X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 84.63万
  • 项目类别:
    Research Grant
Cryo-electron microscopy using DNA-templated protein arrays
使用 DNA 模板蛋白质阵列的冷冻电子显微镜
  • 批准号:
    BB/H000321/1
  • 财政年份:
    2009
  • 资助金额:
    $ 84.63万
  • 项目类别:
    Research Grant
Molecular Motors
分子马达
  • 批准号:
    EP/G037930/1
  • 财政年份:
    2009
  • 资助金额:
    $ 84.63万
  • 项目类别:
    Research Grant
Single-molecule studies of kinesin biophysics using DNA-kinesin chimeras
使用 DNA-驱动蛋白嵌合体进行驱动蛋白生物物理学的单分子研究
  • 批准号:
    BB/G019118/1
  • 财政年份:
    2009
  • 资助金额:
    $ 84.63万
  • 项目类别:
    Research Grant
Molecular Software and Hardware for Programmed Chemical Synthesis
用于程序化化学合成的分子软件和硬件
  • 批准号:
    EP/F056605/1
  • 财政年份:
    2008
  • 资助金额:
    $ 84.63万
  • 项目类别:
    Research Grant
Software-controlled assembly of oligomers
软件控制的低聚物组装
  • 批准号:
    EP/F008597/1
  • 财政年份:
    2007
  • 资助金额:
    $ 84.63万
  • 项目类别:
    Research Grant
Replacement Laser for Holographic Fabrication of Photonic Crystals
用于光子晶体全息制造的替代激光器
  • 批准号:
    EP/D051193/1
  • 财政年份:
    2006
  • 资助金额:
    $ 84.63万
  • 项目类别:
    Research Grant

相似国自然基金

UMSC-Exo通过调控Ribosome biogenesis诱导心肌再生的策略及机制研究
  • 批准号:
    82370264
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Dissecting ribosome pausing during embryogenesis: from global and single molecule studies to whole embryo phenotypes
剖析胚胎发生过程中的核糖体暂停:从整体和单分子研究到整个胚胎表型
  • 批准号:
    BB/X007294/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.63万
  • 项目类别:
    Research Grant
Genome-wide translational responses to stress: a focus on ribosome stalling
全基因组对压力的翻译反应:关注核糖体停滞
  • 批准号:
    BB/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.63万
  • 项目类别:
    Research Grant
A synthetic biology approach to unlocking the role of the ribosome in cell competition
揭示核糖体在细胞竞争中的作用的合成生物学方法
  • 批准号:
    489621
  • 财政年份:
    2023
  • 资助金额:
    $ 84.63万
  • 项目类别:
    Operating Grants
Understanding the role of ribosome-associated long non-coding RNA in cancers of the neural crest
了解核糖体相关长非编码 RNA 在神经嵴癌中的作用
  • 批准号:
    2879751
  • 财政年份:
    2023
  • 资助金额:
    $ 84.63万
  • 项目类别:
    Studentship
Development of disease-specific TCR epitope analysis based on ribosome display
基于核糖体展示的疾病特异性 TCR 表位分析的发展
  • 批准号:
    23K19358
  • 财政年份:
    2023
  • 资助金额:
    $ 84.63万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Defining a role for the mitochondrial protein sulfite oxidase in nucleolar ribosome biogenesis
定义线粒体蛋白亚硫酸氧化酶在核仁核糖体生物合成中的作用
  • 批准号:
    10750182
  • 财政年份:
    2023
  • 资助金额:
    $ 84.63万
  • 项目类别:
EpoR & Stat5 regulation of ribosome biogenesis and protein synthesis in erythropoiesis
EPR
  • 批准号:
    10682214
  • 财政年份:
    2023
  • 资助金额:
    $ 84.63万
  • 项目类别:
How does the nucleolus safeguard ribosome production during meiosis?
核仁如何在减数分裂过程中保护核糖体的产生?
  • 批准号:
    2882597
  • 财政年份:
    2023
  • 资助金额:
    $ 84.63万
  • 项目类别:
    Studentship
Cryo-EM structure analysis of the complex of ribosome inactivating protein and ribosome
核糖体失活蛋白与核糖体复合物的冷冻电镜结构分析
  • 批准号:
    23K18011
  • 财政年份:
    2023
  • 资助金额:
    $ 84.63万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
CAREER: Ribosome-inspired Synthesis of Precision Polymers
职业:核糖体启发的精密聚合物合成
  • 批准号:
    2317652
  • 财政年份:
    2023
  • 资助金额:
    $ 84.63万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了