Stochastic iterative regularization: theory, algorithms and applications
随机迭代正则化:理论、算法和应用
基本信息
- 批准号:EP/T000864/1
- 负责人:
- 金额:$ 49.09万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An inverse problem arises whenever one seeks the cause of observed physical phenomena or observational data, e.g., inferring the governing law from the measurements. This task essentially underlies all scientific discoveries and technological innovations. Thus, the mathematical theory and computational techniques for solving inverse problems are central, e.g., in physics, astronomy, medicine, engineering, and life sciences, and it has evolved into a highly interdisciplinary research area. Inverse problems are usually ill-posed in the sense that the sought-for solution lacks existence, uniqueness or stability with respect to data perturbation. Since the noise is inherent in the observational data, the numerical algorithms have to employ specialized techniques, commonly known as regularization. The corresponding mathematical framework in the form of regularization theory is highly developed, since the pioneering works of A. Tikhonov in 1960s, H. Engl et al from 1980s and many other researchers. This theory has played a vital role in many research areas, and related numerical algorithms have also been intensively investigated. One versatile framework is to minimize an objective function measuring the quality of fitting between the model output and observational data, possibly plus some additional penalty term, and it covers a large class of powerful iterative inversion techniques.Due to the unprecedented advances in data acquisition technologies, large datasets are becoming common place for many practical inverse problems. Prominent examples in medical imaging include dynamic, multispectral, multi-energy or multi-frequency data in computed tomography and optical tomography. The ever increasing volume of available data poses enormous computational challenges to image reconstruction, and traditional iterative methods can be too expensive to apply, and currently it represents one of the bottlenecks to extract useful information from the massive dataset. This is especially challenging for problems involving complex physical models, where each data set is very expensive to simulate.The proposed research aims at addressing the aforementioned outstanding computational challenge using stochastic iterative techniques developed within the machine learning community, and providing relevant theoretical underpinnings. The central idea of stochastic iterative methods is that at each step only a (small) portion of the data set is used to steer the progression of the iterates, instead of the full data set. This allows drastically reducing the computational cost per iteration. This idea has received enormous attention within the machine learning community, and especially has achieved stunning success in deep learning in recent years. Actually stochastic gradient descent and its variants are the workhorse behind many deep learning tasks. A successful completion of this project will greatly advance modern image reconstruction by providing a systematic mathematical and computational framework, including comprehensive theoretical underpinnings, novel algorithms and detailed studies on concrete inverse problems, e.g., in medical imaging.
每当人们寻求观测到的物理现象或观测数据的原因时,就会出现反问题,例如,从测量中推断支配规律。这项任务是所有科学发现和技术创新的根本。因此,求解逆问题的数学理论和计算技术在物理学、天文学、医学、工程和生命科学等领域都是核心,并已发展成为一个高度跨学科的研究领域。逆问题通常是病态的,即所求解在数据扰动下缺乏存在性、唯一性或稳定性。由于噪声是观测数据中固有的,数值算法必须采用专门的技术,通常称为正则化。自20世纪60年代A. Tikhonov、80年代H. Engl等许多研究者的开创性工作以来,相应的正则化理论形式的数学框架得到了高度发展。该理论在许多研究领域起着至关重要的作用,相关的数值算法也得到了深入的研究。一个通用的框架是最小化衡量模型输出和观测数据之间拟合质量的目标函数,可能加上一些额外的惩罚项,它涵盖了一大类强大的迭代反演技术。由于数据采集技术的空前进步,大型数据集正在成为许多实际反问题的常见场所。医学成像的突出例子包括计算机断层扫描和光学断层扫描中的动态、多光谱、多能或多频率数据。不断增加的可用数据量给图像重建带来了巨大的计算挑战,传统的迭代方法成本过高,难以应用,从海量数据集中提取有用信息是目前的瓶颈之一。这对于涉及复杂物理模型的问题尤其具有挑战性,因为每个数据集的模拟都非常昂贵。提出的研究旨在利用机器学习社区开发的随机迭代技术解决上述突出的计算挑战,并提供相关的理论基础。随机迭代方法的核心思想是,在每一步中,只使用数据集的一小部分来引导迭代的进程,而不是使用整个数据集。这可以大大减少每次迭代的计算成本。这个想法在机器学习社区受到了极大的关注,特别是近年来在深度学习领域取得了惊人的成功。实际上,随机梯度下降及其变体是许多深度学习任务背后的主力。该项目的成功完成将通过提供系统的数学和计算框架,包括全面的理论基础,新颖的算法和对具体逆问题(例如医学成像)的详细研究,极大地推进现代图像重建。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Score-Based Generative Models for PET Image Reconstruction
- DOI:10.59275/j.melba.2024-5d51
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:I. Singh;Alexander Denker;Riccardo Barbano;vZeljko Kereta;Bangti Jin;K. Thielemans;P. Maass;S. Arridge
- 通讯作者:I. Singh;Alexander Denker;Riccardo Barbano;vZeljko Kereta;Bangti Jin;K. Thielemans;P. Maass;S. Arridge
Material Decomposition in Spectral CT Using Deep Learning: A Sim2Real Transfer Approach
- DOI:10.1109/access.2021.3056150
- 发表时间:2021-01-01
- 期刊:
- 影响因子:3.9
- 作者:Abascal, Juan F. P. J.;Ducros, Nicolas;Peyrin, Francoise
- 通讯作者:Peyrin, Francoise
Hybrid neural-network FEM approximation of diffusion coefficient in elliptic and parabolic Problems
椭圆和抛物线问题中扩散系数的混合神经网络 FEM 近似
- DOI:10.1093/imanum/drad073
- 发表时间:2023
- 期刊:
- 影响因子:2.1
- 作者:Cen S
- 通讯作者:Cen S
Recovery of multiple parameters in subdiffusion from one lateral boundary measurement
- DOI:10.1088/1361-6420/acef50
- 发表时间:2023-07
- 期刊:
- 影响因子:2.1
- 作者:Siyu Cen;Bangti Jin;Yikan Liu;Zhi Zhou
- 通讯作者:Siyu Cen;Bangti Jin;Yikan Liu;Zhi Zhou
Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Imaging Inverse Problems
- DOI:10.48550/arxiv.2308.14409
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Riccardo Barbano;Alexander Denker;Hyungjin Chung;Tae Hoon Roh;Simon Arrdige;P. Maass;Bangti Jin;J. C. Ye
- 通讯作者:Riccardo Barbano;Alexander Denker;Hyungjin Chung;Tae Hoon Roh;Simon Arrdige;P. Maass;Bangti Jin;J. C. Ye
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bangti Jin其他文献
A primal dual active set with continuation algorithm for the -regularized optimization problem
正则化优化问题的具有连续算法的原始对偶活动集
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2.5
- 作者:
Yuling Jiao;Bangti Jin;Xiliang Lu - 通讯作者:
Xiliang Lu
SVD-DIP: Overcoming the Overfitting Problem in DIP-based CT Reconstruction
SVD-DIP:克服基于DIP的CT重建中的过拟合问题
- DOI:
10.48550/arxiv.2303.15748 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Marco Nittscher;Michael Lameter;Riccardo Barbano;Johannes Leuschner;Bangti Jin;P. Maass - 通讯作者:
P. Maass
On the sectorial property of the Caputo derivative operator
- DOI:
10.1016/j.aml.2015.03.001 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:
- 作者:
Kazufumi Ito;Bangti Jin;Tomoya Takeuchi - 通讯作者:
Tomoya Takeuchi
Investigating Intensity Normalisation for PET Reconstruction with Supervised Deep Learning
利用监督深度学习研究 PET 重建的强度归一化
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
I. Singh;Alexander Denker;Bangti Jin;Kris Thielemans;Simon Arridge - 通讯作者:
Simon Arridge
A Unified Primal Dual Active Set Algorithm for Nonconvex Sparse Recovery
非凸稀疏恢复的统一原始双活动集算法
- DOI:
10.1214/19-sts758 - 发表时间:
2013-10 - 期刊:
- 影响因子:5.7
- 作者:
Jian Huang;Yuling Jiao;Bangti Jin;Jin Liu;Xiliang Lu;Can Yang - 通讯作者:
Can Yang
Bangti Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bangti Jin', 18)}}的其他基金
Sparsity Regularization for Inverse Problems -- Theory, Algorithm and Application
反问题的稀疏正则化——理论、算法与应用
- 批准号:
EP/M025160/1 - 财政年份:2015
- 资助金额:
$ 49.09万 - 项目类别:
Research Grant
相似海外基金
CAREER: Investigating Iterative Interrelations in Socio-Environmental Processes to Improve Climate Change Attribution Research
职业:调查社会环境过程中的迭代相互关系以改进气候变化归因研究
- 批准号:
2338058 - 财政年份:2024
- 资助金额:
$ 49.09万 - 项目类别:
Standard Grant
Iterative Improvement of a Program for Building Inclusive, Diverse, Equitable, Accessible Large-scale (IDEAL) Participatory Science Projects
迭代改进建立包容、多样化、公平、可访问的大型(IDEAL)参与性科学项目的计划
- 批准号:
2313996 - 财政年份:2024
- 资助金额:
$ 49.09万 - 项目类别:
Continuing Grant
Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
- 批准号:
10552325 - 财政年份:2023
- 资助金额:
$ 49.09万 - 项目类别:
Iterative Macromolecular Functionalization
迭代大分子功能化
- 批准号:
2304952 - 财政年份:2023
- 资助金额:
$ 49.09万 - 项目类别:
Standard Grant
Simulation Academy at Yale: Youth Entering Science (SAY-YES!)
耶鲁大学模拟学院:青年进入科学(说是!)
- 批准号:
10663646 - 财政年份:2023
- 资助金额:
$ 49.09万 - 项目类别:
Personalized Risk Prediction for Prevention and Early Detection of Postoperative Failure to Rescue
个性化风险预测,预防和早期发现术后抢救失败
- 批准号:
10753822 - 财政年份:2023
- 资助金额:
$ 49.09万 - 项目类别:
An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
- 批准号:
10716509 - 财政年份:2023
- 资助金额:
$ 49.09万 - 项目类别:
Development of an Interactive Bioethics Training Module for Healthcare Providers Treating Patients Who Need Liver Transplant for Alcohol-associated Liver Disease
为治疗酒精相关性肝病需要肝移植的患者的医疗保健提供者开发交互式生物伦理学培训模块
- 批准号:
10785093 - 财政年份:2023
- 资助金额:
$ 49.09万 - 项目类别:
A Learning Health System to increase organ donation and equity in populations experiencing health disparities
学习健康系统可增加健康差异人群的器官捐赠和公平性
- 批准号:
10731576 - 财政年份:2023
- 资助金额:
$ 49.09万 - 项目类别:
Exploring PTSD Symptoms, Barriers and Facilitators to Mindfulness-based Stress Reduction for Justice-Involved Black/African American Female Adolescents and Parents/Caregivers
探索创伤后应激障碍 (PTSD) 症状、障碍和促进因素,为涉及正义的黑人/非裔美国女性青少年和父母/照顾者进行基于正念的减压
- 批准号:
10593806 - 财政年份:2023
- 资助金额:
$ 49.09万 - 项目类别: