Constructions and properties of p-adic L-functions for GL(n)

GL(n) 的 p 进 L 函数的构造和性质

基本信息

  • 批准号:
    EP/T001615/1
  • 负责人:
  • 金额:
    $ 39.5万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

L-functions are fundamental mathematical objects that encode deep arithmetic information. Their study goes back centuries, and they are the subject of the two biggest unsolved problems in modern number theory, namely the Riemann hypothesis and the Birch and Swinnerton-Dyer (BSD) conjecture. The BSD conjecture predicts that the number of rational solutions of a cubic equation (defining an 'elliptic curve') is controlled by a value of an analytic L-function. This prediction, providing a mysterious bridge between the fields of arithmetic geometry and complex analysis, has since been hugely generalised in the Bloch-Kato conjectures. There has been much recent success in attacking such problems by changing the way we look at this bridge. In particular, by considering different notions of 'distance' between two numbers, we are able to build a whole array of different algebraic connections between arithmetic and analysis, and these have allowed us to build parts of the bridge required for BSD and Bloch-Kato. The distance in question is the 'p-adic' distance, where two numbers are very close if their difference is very divisible by a prime p (for example, the numbers 1 and 1,000,000,001 are very close 2-adically, since their difference is divisible by 2 nine times). For each prime p, there should be a p-adic version of the Bloch-Kato conjectures - known as 'Iwasawa main conjectures' - and each of these gives another crucial connection between arithmetic and analysis. Such connections depend absolutely on the existence of p-adic versions of L-functions. In addition to their utility in solving important conjectures, p-adic L-functions are beautiful objects in their own right. It is expected that for every L-function there is a p-adic version, but as they can be extremely difficult to construct, we are very far from reaching this goal. The aim of this proposal is to extensively push forward our understanding of this p-adic picture by constructing new p-adic L-functions, drawing together novel techniques from algebraic topology, geometry and representation theory to attack fundamental but historically intractable cases. In particular, I will use powerful new methods developed in my recent research to give some of the first constructions for higher-dimensional automorphic forms.
L函数是编码深层算术信息的基本数学对象。他们的研究可以追溯到几个世纪前,并且是现代数论中两个最大的未解决问题的主题,即Riemann假设和Birch and Swinnerton-Dyer(BSD)猜想。 BSD猜想预言了一个三次方程(定义了一条“椭圆曲线”)的有理解的个数由一个解析L函数的值控制。这一预测,提供了一个神秘的桥梁之间的领域算术几何和复杂的分析,已被极大地推广,在布洛赫-加藤aptures。最近,通过改变我们对这座桥的看法,在解决这些问题方面取得了很大的成功。特别是,通过考虑两个数字之间不同的“距离”概念,我们能够在算术和分析之间建立一系列不同的代数联系,这些使我们能够建立BSD和Bloch-Kato所需的桥梁。 这里的距离是“p-adic”距离,如果两个数字的差可以被素数p整除,那么它们就非常接近(例如,数字1和1,000,000,001非常接近2-adic,因为它们的差可以被2整除9次)。对于每一个素数p,都应该有一个布洛赫-加藤定理的p-adic版本--被称为“岩泽主定理”--每一个都给出了算术和分析之间的另一个重要联系。这样的连接完全依赖于L-函数的p-adic版本的存在性。 除了它们在解决重要问题中的效用之外,p-adic L-函数本身也是美丽的对象。我们期望每个L-函数都有一个p-adic版本,但是由于它们非常难以构造,我们离这个目标还很远。 该提案的目的是通过构建新的p-adic L-函数,将代数拓扑,几何和表示论中的新技术结合起来,以攻击基本但历史上难以解决的情况,从而广泛推动我们对p-adic图像的理解。特别是,我将使用我最近的研究中开发的强大的新方法来给出高维自守形式的一些第一个构造。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Arithmetic of p-irregular modular forms: families and p-adic L-functions
p-不规则模形式的算术:族和 p-adic L-函数
  • DOI:
    10.48550/arxiv.2011.02331
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Betina A
  • 通讯作者:
    Betina A
Overconvergent Hilbert modular forms via perfectoid modular varieties
通过完美模变体的过收敛希尔伯特模形式
Overconvergent cohomology,
过收敛上同调,
Parabolic eigenvarieties via overconvergent cohomology
通过过收敛上同调的抛物线特征簇
  • DOI:
    10.1007/s00209-021-02707-9
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Barrera Salazar D
  • 通讯作者:
    Barrera Salazar D
On $p$-adic $L$-functions for $GL_{2n}$ in finite slope Shalika families
关于有限斜率 Shalika 族中 $GL_{2n}$ 的 $p$-adic $L$-函数
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Barrera Salazar;Mladen Dimitrov;Chris Williams
  • 通讯作者:
    Chris Williams
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Williams其他文献

Innovativeness in the Professional Services Industry: A Practice Level Analysis
专业服务行业的创新:实践水平分析
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopher Williams;S. Triest
  • 通讯作者:
    S. Triest
Approximations to the Fisher Information Metric of Deep Generative Models for Out-Of-Distribution Detection
用于分布外检测的深度生成模型的 Fisher 信息度量的近似
  • DOI:
    10.48550/arxiv.2403.01485
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sam Dauncey;Chris Holmes;Christopher Williams;Fabian Falck
  • 通讯作者:
    Fabian Falck
Experiential Learning and Innovation in Offshore Outsourcing Transitions
离岸外包转型中的体验式学习和创新
  • DOI:
    10.1108/s1571-502720140000027005
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopher Williams;Maya Kumar
  • 通讯作者:
    Maya Kumar
Production of Sustainable Aromatics from Biorenewable Furans
Towards Stratified Space Learning: Linearly Embedded Graphs
迈向分层空间学习:线性嵌入图
  • DOI:
    10.3934/fods.2021026
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yossi Bokor Bleile;Katharine Turner;Christopher Williams
  • 通讯作者:
    Christopher Williams

Christopher Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Williams', 18)}}的其他基金

Constructions and properties of p-adic L-functions for GL(n)
GL(n) 的 p 进 L 函数的构造和性质
  • 批准号:
    EP/T001615/2
  • 财政年份:
    2022
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Fellowship
I-Corps: Multi-axis Additive Manufacturing Process for Performance-Optimized Composites
I-Corps:性能优化复合材料的多轴增材制造工艺
  • 批准号:
    2140020
  • 财政年份:
    2021
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Standard Grant
REU Site: CO2 Chemical Engineering: Opportunities and Challenges
REU 网站:CO2 化学工程:机遇与挑战
  • 批准号:
    2050956
  • 财政年份:
    2021
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Standard Grant
CPS: TTP Option: Medium: Collaborative Research: Cyber-Physical System Integrity and Security with Impedance Signatures
CPS:TTP 选项:中:协作研究:具有阻抗签名的网络物理系统完整性和安全性
  • 批准号:
    1932213
  • 财政年份:
    2019
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Continuing Grant
I-Corps: High-temperature 3D Printer for High-Performance Polymers
I-Corps:用于高性能聚合物的高温 3D 打印机
  • 批准号:
    1934465
  • 财政年份:
    2019
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Standard Grant
GOALI: Additive Manufacturing of High Performance Elastomers via Vat Photopolymerization of Aqueous Polymer Dispersions
GOALI:通过水性聚合物分散体的还原光聚合增材制造高性能弹性体
  • 批准号:
    1762712
  • 财政年份:
    2018
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Standard Grant
Computational Design of Graphene-Based Materials for Challenging Nuclear Decommissioning Applications
具有挑战性的核退役应用的石墨烯基材料的计算设计
  • 批准号:
    EP/R033366/1
  • 财政年份:
    2018
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Fellowship
GOALI/Collaborative Research: Topology Optimization for Additively Manufactured Metal Castings
GOALI/合作研究:增材制造金属铸件的拓扑优化
  • 批准号:
    1462089
  • 财政年份:
    2015
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Standard Grant
UNS: Selective Catalytic Conversion of Syngas-Derived Dimethyl Oxalate to Ethylene Glycol: Mechanistic Insights from In-Situ Surface Vibrational Spectroscopy
UNS:合成气衍生的草酸二甲酯选择性催化转化为乙二醇:来自原位表面振动光谱的机理见解
  • 批准号:
    1510157
  • 财政年份:
    2015
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research/Cybermanufacturing: Just Make It: Integrating Cybermanufacturing into Design Studios to Enable Innovation
EAGER/协作研究/网络制造:Just Make It:将网络制造集成到设计工作室以实现创新
  • 批准号:
    1546985
  • 财政年份:
    2015
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Standard Grant

相似国自然基金

镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
  • 批准号:
    20977008
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
层状钴基氧化物热电材料的组织取向度与其性能关联规律研究
  • 批准号:
    50702003
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
  • 批准号:
    DP240102053
  • 财政年份:
    2024
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Discovery Projects
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Training Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333551
  • 财政年份:
    2024
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Continuing Grant
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
  • 批准号:
    2401482
  • 财政年份:
    2024
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Continuing Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Standard Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
  • 批准号:
    2404011
  • 财政年份:
    2024
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Standard Grant
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
  • 批准号:
    2343416
  • 财政年份:
    2024
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Standard Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
  • 批准号:
    24K17868
  • 财政年份:
    2024
  • 资助金额:
    $ 39.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了