Using Machine learning to enable feedback controlled manufacture of self-assembled patterned materials
使用机器学习实现自组装图案材料的反馈控制制造
基本信息
- 批准号:EP/T004533/1
- 负责人:
- 金额:$ 32.23万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Achieving control over materials' structure at small length scales is a critical requirement to realise new technologies with improved performance in areas of energy generation, energy storage and healthcare. To give some examples, solar cells, batteries and sensors for medical diagnostics can all benefit from nano and micron scale structuring. An attractive way to produce such structures is via self-assembly, where materials arrange themselves into well-defined regular patterns. One way to access this behaviour is by drying a suspension or solution containing the material of interest. For example, if a suspension of particles in a liquid is spread onto a solid support and left to dry, under some conditions very regular, repeating "crystalline" arrangements will result. These arrangements possess optical properties that can be used for sensors, and serve as templates to make efficient electrodes for batteries and solar cell materials. Other examples of useful structure formation processes in drying solutions include complex networks that form from multi-component mixtures, and regular crystalline structures, both of which can enhance the performance of solar cells if present at certain specific length scales. However, despite its simplicity and potential applications, at present self-assembly in drying solutions is mainly used as a research method to produce small quantities of material, and is not viewed as a routine manufacturing method. We believe that this is because self-assembly is highly sensitive to many parameters, which hampers reproducibility and requires time consuming optimisation to produce a given material, making it un-attractive for large scale manufacturing. Here, we plan to investigate if adding an automated control system to continuous self-assembly/solution structure based processes can overcome these obstacles. To implement the control system, we will make microscopic observations during self-assembly and use algorithms to adjust the manufacturing instruments parameters based on this feedback. This method will be used both to rapidly identify the parameters required to produce the ideal structure for a particular application, and also to maintain high quality uniform structure production during continuous manufacture of large amounts of material. Despite feedback being well established as an effective way to control manufacturing processes in other sectors, this method has not yet been deployed for self-assembly due to difficulties in observing the structure forming process, and the challenges of implementing the required algorithms to beneficially adjust parameters. Here we will use advances in real time monitoring of drying films, together with expertise in "machine learning" computer methods that are able to build models for complex behaviour, to overcome these challenges.
在小尺度上实现对材料结构的控制是实现新技术在能源生产、能源储存和医疗保健领域提高性能的关键要求。举例来说,用于医疗诊断的太阳能电池、电池和传感器都可以从纳米和微米尺度的结构中受益。一种有吸引力的生产这种结构的方法是通过自组装,材料将自己排列成明确的规则模式。获得这种行为的一种方法是干燥含有感兴趣物质的悬浮液或溶液。例如,如果液体中的悬浮粒子被扩散到固体载体上并晾干,在某些条件下,会产生非常规则的、重复的“晶体”排列。这些排列具有可用于传感器的光学特性,并可作为制造电池和太阳能电池材料的高效电极的模板。在干燥溶液中有用的结构形成过程的其他例子包括由多组分混合物形成的复杂网络,以及规则的晶体结构,如果存在于特定的长度尺度,这两种结构都可以提高太阳能电池的性能。然而,尽管其简单性和潜在的应用,目前在干燥溶液中的自组装主要是作为一种研究方法来生产小批量的材料,而不是被视为常规的制造方法。我们认为这是因为自组装对许多参数高度敏感,这阻碍了可重复性,并且需要耗时的优化来生产给定的材料,使其对大规模制造没有吸引力。在这里,我们计划研究在基于连续自组装/解决方案结构的过程中添加自动化控制系统是否可以克服这些障碍。为了实现控制系统,我们将在自组装过程中进行微观观察,并使用算法根据该反馈调整制造仪器参数。该方法既可用于快速识别为特定应用生产理想结构所需的参数,也可用于在大量材料的连续制造过程中保持高质量的均匀结构生产。尽管反馈作为控制其他领域制造过程的有效方法已经得到了很好的确立,但由于观察结构形成过程的困难,以及实施所需算法以有益地调整参数的挑战,这种方法尚未应用于自组装。在这里,我们将利用干燥薄膜实时监测方面的进步,以及能够为复杂行为建立模型的“机器学习”计算机方法的专业知识,来克服这些挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Ebbens其他文献
Stephen Ebbens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Ebbens', 18)}}的其他基金
Printable Micro-rockets for Rapid Medical Diagnosis and Biomarker Detection
用于快速医疗诊断和生物标志物检测的可打印微型火箭
- 批准号:
EP/N033736/1 - 财政年份:2016
- 资助金额:
$ 32.23万 - 项目类别:
Fellowship
Using Self-Assembling Swimming Devices to Control Motion at the Nanoscale
使用自组装游泳装置控制纳米级运动
- 批准号:
EP/J002402/1 - 财政年份:2011
- 资助金额:
$ 32.23万 - 项目类别:
Fellowship
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
- 批准号:
2425300 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OCE-PRF: Using machine learning to investigate temporal dynamics of methane seep fauna at the Ocean Observatories Initiative (OOI) Regional Cabled Array
博士后奖学金:OCE-PRF:利用机器学习研究海洋观测计划 (OOI) 区域有线阵列中甲烷渗漏动物群的时间动态
- 批准号:
2307504 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Standard Grant
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
- 批准号:
10100493 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Collaborative R&D
Accelerating pulse breeding using machine learning
利用机器学习加速豆类育种
- 批准号:
LP230100351 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Linkage Projects
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
- 批准号:
MR/X033880/1 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Fellowship
Enhancing Condition Monitoring and Prognostics of Variable Speed Motor Drives Using Machine Learning and IoT Technologies
使用机器学习和物联网技术增强变速电机驱动器的状态监测和预测
- 批准号:
2910604 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Studentship
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
- 批准号:
24K17615 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
- 批准号:
10979324 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
A Human-Trustable Self-Improving Machine Learning Framework for Rapid Disaster Responses Using Satellite Sensor Imagery
人类可信的自我改进机器学习框架,利用卫星传感器图像快速响应灾难
- 批准号:
EP/X027732/1 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Research Grant
NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
- 批准号:
2401047 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Standard Grant