Using Self-Assembling Swimming Devices to Control Motion at the Nanoscale

使用自组装游泳装置控制纳米级运动

基本信息

  • 批准号:
    EP/J002402/1
  • 负责人:
  • 金额:
    $ 114.26万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Films such as the "Fantastic Voyage" imaginatively explore the idea of developing miniaturised devices capable of navigating through the body and performing tasks, such as removing tumours. While this vision may seem fantastical, the reality is that researchers are moving closer towards this goal. At present, man-made machines a fraction of the width of a human hair can swim around in water containing a small amount of chemical "fuel" without any external intervention. By equipping these devices with magnets, they can also be manually steered towards cargo using external fields, which they can pick up, drag and then release. However these achievements have not yet enabled the ultimate goal of making devices that can navigate themselves through the body to deliver a drug to a particular therapeutic target. In this case it is impractical to use external steering, and the devices must instead find their own way. This is very challenging because of the way in which liquid environments are experienced by miniaturised devices. Due to the way in which liquid properties change at small sizes, the devices experience the surrounding fluid as treacle like; meaning they cannot generate motion using the swimming motions that we are familiar with. Also the devices are constantly jostled by collisions from surrounding molecules, causing them to change their position and orientation randomly, and in some parts of the body there are turbulent flows to contend with.The aim of this Fellowship is to overcome these challenges to build miniaturised swimming devices that can direct themselves towards targets without external intervention, to enable a range of applications including targeted drug delivery. In order for this to be possible the devices must be able to adjust their motion according to their surroundings. This will be achieved using a new range of materials that expand and contract according to the presence or absence of certain signalling chemicals. These size changes will cause the swimming device to change the degree to which it is affected by the random knocks it receives, either keeping it moving in a straight line, or encouraging it to change direction rapidly. The size changes will and also alter the speed of the device. In this way devices can exploit the chaos of their surroundings to carry them to specific locations. The ability to attach and release cargo in a similarly responsive way will also be developed. As well as producing significant advances for drug delivery, the transport systems developed by the Fellowship will also be used to transport material for analysis within medical diagnostic devices. In addition, a class of swimmers that rotate rather than translate will be made and used to mix fluids such as chemical reagents in the small channels of these diagnostic systems. The enhanced motion of the swimmers can also be used to speed up reaction rates in chemical processes, resulting in faster industrial processes.To build swimming devices for the above tasks with desirable properties such as being fast, and moving in a straight line, the Fellowship will develop new manufacturing methods. Combining conventional parts together to make devices can simply be carried out by positioning them in the correct places and sticking them together, however at small scales such operations are impractically laborious and require expensive microscopic manipulations. A more practical approach is to instead equip the individual components with "sticky tags" or other features that will bias the self-assembly to make preferred structures. However some variations will remain. One of the key novel methodologies of the work will actually exploit this variation, by applying "natural selection" using a physical obstacle course to pick out devices with the best performance for a particular task. In this way efficient swimmers can assemble themselves by exploiting a random process without requiring external intervention.
像《奇妙的航行》这样的电影探索了开发能够在身体中导航并执行任务(如切除肿瘤)的智能设备的想法。虽然这一愿景看起来很不切实际,但现实是研究人员正在朝着这一目标迈进。目前,只有人类头发丝粗细的人造机器可以在含有少量化学“燃料”的水中游动,而无需任何外部干预。通过为这些设备配备磁铁,它们还可以使用外部磁场手动转向货物,它们可以拾取,拖动然后释放。然而,这些成就还没有实现制造能够在体内导航以将药物递送到特定治疗靶点的装置的最终目标。在这种情况下,使用外部转向是不切实际的,设备必须找到自己的方式。这是非常具有挑战性的,因为液体环境的方式是由封装的设备经历的。由于液体性质在小尺寸时发生变化的方式,这些设备将周围的流体体验为糖浆状;这意味着它们无法使用我们熟悉的游泳运动来产生运动。此外,这些装置会不断受到周围分子的碰撞,导致它们随机改变位置和方向,并且在身体的某些部位存在湍流。本奖学金的目的是克服这些挑战,构建能够在没有外部干预的情况下将自己引导到目标的游泳装置,以实现一系列应用,包括靶向药物输送。为了使这成为可能,设备必须能够根据其周围环境调整其运动。这将使用一系列新的材料来实现,这些材料根据某些信号化学物质的存在或不存在而膨胀和收缩。这些尺寸变化将导致游泳装置改变其受到随机撞击的影响程度,要么保持其直线运动,要么鼓励其快速改变方向。尺寸的变化将改变设备的速度。通过这种方式,设备可以利用周围环境的混乱将它们带到特定的位置。还将开发以类似的响应方式连接和释放货物的能力。除了在药物输送方面取得重大进展外,该研究金开发的运输系统还将用于运输材料,以便在医疗诊断设备中进行分析。此外,将制造一类旋转而不是平移的游泳者,用于在这些诊断系统的小通道中混合化学试剂等流体。游泳者的增强运动也可以用来加速化学过程中的反应速率,从而加快工业过程。为了制造满足上述任务的游泳装置,具有快速和直线运动等理想特性,研究金将开发新的制造方法。将传统部件组合在一起制造设备可以简单地通过将它们定位在正确的位置并将它们粘在一起来进行,但在小规模下,这种操作不切实际地费力,并且需要昂贵的显微操作。一种更实用的方法是给单个组件配备“粘性标签”或其他功能,这些功能将使自组装偏向于制造首选结构。但仍将存在一些变化。这项工作的一个关键的新方法实际上将利用这种变化,通过应用“自然选择”,使用物理障碍课程来挑选出具有最佳性能的设备用于特定任务。通过这种方式,高效的游泳者可以通过利用随机过程来组装自己,而不需要外部干预。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Symmetrical Catalytic Colloids Display Janus-Like Active Brownian Particle Motion.
  • DOI:
    10.1002/advs.202303154
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Archer, Richard J.;Ebbens, Stephen J.
  • 通讯作者:
    Ebbens, Stephen J.
Boundaries can steer active Janus spheres.
边界可以引导活跃的Janus球体。
  • DOI:
    10.1038/ncomms9999
  • 发表时间:
    2015-12-02
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Das S;Garg A;Campbell AI;Howse J;Sen A;Velegol D;Golestanian R;Ebbens SJ
  • 通讯作者:
    Ebbens SJ
Helical paths, gravitaxis, and separation phenomena for mass-anisotropic self-propelling colloids: experiment versus theory
质量各向异性自推进胶体的螺旋路径、重力和分离现象:实验与理论
  • DOI:
    10.48550/arxiv.1701.06824
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Campbell A
  • 通讯作者:
    Campbell A
A Pickering Emulsion Route to Swimming Active Janus Colloids.
Directed Propulsion, Chemotaxis and Clustering in Propelled Microparticles
  • DOI:
    10.2174/1877946805999150710162814
  • 发表时间:
    2014-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gary J. Dunderdale and Stephen Ebbens
  • 通讯作者:
    Gary J. Dunderdale and Stephen Ebbens
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Ebbens其他文献

Stephen Ebbens的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Ebbens', 18)}}的其他基金

Using Machine learning to enable feedback controlled manufacture of self-assembled patterned materials
使用机器学习实现自组装图案材料的反馈控制制造
  • 批准号:
    EP/T004533/1
  • 财政年份:
    2019
  • 资助金额:
    $ 114.26万
  • 项目类别:
    Research Grant
Printable Micro-rockets for Rapid Medical Diagnosis and Biomarker Detection
用于快速医疗诊断和生物标志物检测的可打印微型火箭
  • 批准号:
    EP/N033736/1
  • 财政年份:
    2016
  • 资助金额:
    $ 114.26万
  • 项目类别:
    Fellowship

相似国自然基金

Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
  • 批准号:
    82371813
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
  • 批准号:
    32302161
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Self-shrinkers的刚性及相关问题
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于Self-peptide和Fe5C2构建的高敏感MR分子探针对肿瘤血管的MR靶向成像研究
  • 批准号:
    81501521
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
平均曲率流中非紧Self-shrinkers的结构
  • 批准号:
    11301190
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
2维伪欧氏空间下平均曲率流中Self-shrinker问题的研究
  • 批准号:
    11126152
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
  • 批准号:
    21171046
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
成束蛋白Fascin1在肺癌"self-seeding"过程中的作用及机制研究
  • 批准号:
    81001041
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
工业用腈水合酶全新蛋白质翻译后调节体系self-subunit swapping的研究
  • 批准号:
    31070711
  • 批准年份:
    2010
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Solubilising Insoluble Proteins using Self-Assembling Supramolecular Structures
使用自组装超分子结构溶解不溶性蛋白质
  • 批准号:
    2628326
  • 财政年份:
    2021
  • 资助金额:
    $ 114.26万
  • 项目类别:
    Studentship
Investigating the regeneration using novel neutral self-assembling peptide in non-contained bone defect
研究新型中性自组装肽在非包容性骨缺损中的再生
  • 批准号:
    20K23038
  • 财政年份:
    2020
  • 资助金额:
    $ 114.26万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of Adsorption System for Environmental Contaminants using temperature-responsive self-assembling peptides
利用温度响应自组装肽开发环境污染物吸附系统
  • 批准号:
    19H04303
  • 财政年份:
    2019
  • 资助金额:
    $ 114.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Vitreous reconstraction using a self-assembling peptide
使用自组装肽进行玻璃体重建
  • 批准号:
    18K12078
  • 财政年份:
    2018
  • 资助金额:
    $ 114.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of self-assembling and tumor-specific ultrasound contrast agents using carbon nanotubes
使用碳纳米管开发自组装和肿瘤特异性超声造影剂
  • 批准号:
    18K07627
  • 财政年份:
    2018
  • 资助金额:
    $ 114.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of oil-containing wastewater treatment using self-assembling organic molecules
利用自组装有机分子开发含油废水处理技术
  • 批准号:
    17K00609
  • 财政年份:
    2017
  • 资助金额:
    $ 114.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reversible Gelation of Blood Using Self-Assembling Biopolymers: Understanding the Mechanism for Reversible Self-Assembly
使用自组装生物聚合物实现血液的可逆凝胶化:了解可逆自组装的机制
  • 批准号:
    1508155
  • 财政年份:
    2015
  • 资助金额:
    $ 114.26万
  • 项目类别:
    Continuing Grant
3D culture of cells and fluorescent imaging of extracellular environment using self-assembling peptide gels
使用自组装肽凝胶进行细胞 3D 培养和细胞外环境荧光成像
  • 批准号:
    15K16559
  • 财政年份:
    2015
  • 资助金额:
    $ 114.26万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Fundamental research for the development of an efficient hepatic regenerative cell therapy using self-assembling peptide hydrogel
使用自组装肽水凝胶开发高效肝再生细胞疗法的基础研究
  • 批准号:
    15K09030
  • 财政年份:
    2015
  • 资助金额:
    $ 114.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AF: Small: Using Notions of Simulation to Explore the Power of Self-Assembling Systems
AF:小:使用模拟概念探索自组装系统的力量
  • 批准号:
    1422152
  • 财政年份:
    2014
  • 资助金额:
    $ 114.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了