Printable Micro-rockets for Rapid Medical Diagnosis and Biomarker Detection

用于快速医疗诊断和生物标志物检测的可打印微型火箭

基本信息

  • 批准号:
    EP/N033736/1
  • 负责人:
  • 金额:
    $ 61.63万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Medical diagnostic tests performed in high throughput, time critical NHS hospital laboratories are key to ensuring that clinicians can deliver high quality patient care. An important type of test, providing diagnosis for a wide range of diseases and illnesses, including cancer and heart problems, are immunoassays. These assays are based on nature's exquisite recognition apparatus: anti-bodies. Immunoassays involve attaching anti-bodies to a detector surface, waiting for the analyte (e.g. protein biomarkers or specific cells) of interest to become bound at the surface, and finally using electrical or optical methods to read-out the test result. However, due to the low concentration of many diagnostic analytes, the time spent waiting for sufficient amounts of analyte to diffuse to the detector to enable read-out can be significant. The consequence of these long incubation times is severe: for example automated hospital instruments that can handle thousands of samples per hour are rate limited by up to twenty minute waits for the immunoassay process to complete. As well as reducing throughput for routine analysis, these delays hamper the task of returning time critical diagnostic information to clinicians, such as screening for heart problems in patients with chest pain. Slow accumulation of analyte at an anti-body detector also limits developing methods that rely on isolating rare cells, such as circulating tumour cells to indicate the progression of cancer and enable personalised medicine.In this context, it is clear that the challenge of speeding up the rate at which analytes reach the detector is great, and that successfully achieving this can have significant Healthcare impact.Here we propose to develop a new approach to achieve rapid analyte detection, by exploiting micro-rockets; small scale devices that can generate rapid motion within fluids. Micro-rockets are powered by the asymmetrical release of bubbles from their surface. These bubbles are generated by enzymes decomposing fuel molecules in the surrounding solution. Micro-rockets will be used to speed up immunoassays in two ways. Firstly, micro-rockets' rapid motion and bubble generation stirs solutions, which is otherwise hard to achieve at small scales. This will be used to reduce the incubation times for immunoassays where anti-bodies are attached to the inside surfaces of a "micro-well" containing the analytical solution. By agitating the solution with micro-rockets, analytes will contact the well surfaces more frequently, speeding up detection. In the second method, the micro-rockets themselves will be covered with anti-bodies and used as a mobile detector, rapidly moving throughout the analytical sample. The fast motion will allow dilute quantities of analyte to be rapidly located. Analyte binding rate to anti-bodies and selectivity will also be improved by using a rapidly moving detector surface. At the end of the incubation period, magnets will be used to retrieve the dispersed rockets to enable analyte concentration to be determined using existing optical or electrical methods. Efficiently developing new micro-rockets with the required functions of analyte recognition and magnetic control will be aided by using ink-jet printing to allow micro-rocket composition, size, shape to be easily controlled and optimised.To demonstrate the utility of micro-rockets, experiments will be conducted to compare the speed at which micro-rockets can acquire analytes, compared to the existing diagnostic methods used by hospitals. Two diagnostic tests will be considered: one for protein molecules called "Troponins" that signal recent cardiac damage, and the second for circulating tumour cells. Establishing proof of micro-rocket effectiveness in this way will be a key step to attract interest from industrial partners who can assist the development of this technology to allow eventual deployment in hospitals.
在高通量、时间紧迫的NHS医院实验室进行的医学诊断测试是确保临床医生能够提供高质量患者护理的关键。免疫分析是一种重要的检测方法,可以诊断各种各样的疾病,包括癌症和心脏病。这些检测是基于自然界的精密识别装置:抗体。免疫测定包括将抗体附着在检测器表面,等待感兴趣的分析物(如蛋白质生物标志物或特定细胞)在表面结合,最后使用电或光学方法读出测试结果。然而,由于许多诊断分析物的浓度很低,等待足够量的分析物扩散到检测器以实现读出所花费的时间可能很长。这些长孵育时间的后果是严重的:例如,每小时可以处理数千个样本的自动化医院仪器,在免疫测定过程完成之前的等待时间最多为20分钟。除了降低常规分析的吞吐量外,这些延迟还阻碍了向临床医生返回关键诊断信息的任务,例如胸痛患者的心脏问题筛查。抗体检测器中分析物的缓慢积累也限制了依赖于分离稀有细胞的方法的发展,例如循环肿瘤细胞,以指示癌症的进展并实现个性化医疗。在这种情况下,很明显,加快分析物到达检测器的速度是一个巨大的挑战,成功实现这一目标可以对医疗保健产生重大影响。在这里,我们提出了一种利用微火箭来实现快速分析物检测的新方法;能在流体中产生快速运动的小型装置。微型火箭的动力来自于表面不对称的气泡释放。这些气泡是由酶分解周围溶液中的燃料分子产生的。微型火箭将通过两种方式加快免疫分析的速度。首先,微火箭的快速运动和气泡产生解决了小尺度难以实现的问题。这将用于减少免疫测定的孵育时间,其中抗体附着在含有分析溶液的“微孔”的内表面。通过用微型火箭搅拌溶液,分析物将更频繁地接触井表面,从而加快检测速度。在第二种方法中,微型火箭本身将被抗体覆盖,并用作移动探测器,在整个分析样品中快速移动。快速运动将允许稀释量的分析物快速定位。通过使用快速移动的检测器表面,分析物与抗体的结合率和选择性也将得到提高。在孵育期结束时,将使用磁铁回收分散的火箭,以便使用现有的光学或电学方法确定分析物浓度。利用喷墨打印技术,可以轻松地控制和优化微型火箭的组成、大小和形状,从而有效地开发具有分析物识别和磁控制所需功能的新型微型火箭。为了证明微型火箭的效用,将进行实验,将微型火箭获取分析物的速度与医院使用的现有诊断方法进行比较。两种诊断测试将被考虑:一种是检测被称为“肌钙蛋白”的蛋白质分子,它表明最近的心脏损伤,另一种是检测循环肿瘤细胞。以这种方式证明微型火箭的有效性,将是吸引工业伙伴的兴趣的关键步骤,这些伙伴可以协助开发这项技术,以便最终在医院部署。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
pH-Responsive Catalytic Janus Motors with Autonomous Navigation and Cargo-Release Functions
  • DOI:
    10.1002/adfm.202000324
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Archer, Richard A.;Howse, Johnathan R.;Ebbens, Stephen J.
  • 通讯作者:
    Ebbens, Stephen J.
Reactive Inkjet Printing and Propulsion Analysis of Silk-based Self-propelled Micro-stirrers.
丝基自驱动微搅拌器的反应喷墨打印和推进分析。
  • DOI:
    10.3791/59030
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gregory DA
  • 通讯作者:
    Gregory DA
Reactive Inkjet Printing - A Chemical Synthesis Tool
反应喷墨打印 - 化学合成工具
  • DOI:
    10.1039/9781788010511-00169
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gregory D
  • 通讯作者:
    Gregory D
Light-driven locomotion of a centimeter-sized object at the air-water interface: effect of fluid resistance.
  • DOI:
    10.1039/c9ra01417a
  • 发表时间:
    2019-03-12
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Kawashima, Hisato;Shioi, Akihisa;Archer, Richard J.;Ebbens, Stephen J.;Nakamura, Yoshinobu;Fujii, Syuji
  • 通讯作者:
    Fujii, Syuji
Rotating ellipsoidal catalytic micro-swimmers via glancing angle evaporation
通过掠射角蒸发旋转椭圆体催化微型游泳器
  • DOI:
    10.1039/d1ma00533b
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Kirvin A
  • 通讯作者:
    Kirvin A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Ebbens其他文献

Stephen Ebbens的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Ebbens', 18)}}的其他基金

Using Machine learning to enable feedback controlled manufacture of self-assembled patterned materials
使用机器学习实现自组装图案材料的反馈控制制造
  • 批准号:
    EP/T004533/1
  • 财政年份:
    2019
  • 资助金额:
    $ 61.63万
  • 项目类别:
    Research Grant
Using Self-Assembling Swimming Devices to Control Motion at the Nanoscale
使用自组装游泳装置控制纳米级运动
  • 批准号:
    EP/J002402/1
  • 财政年份:
    2011
  • 资助金额:
    $ 61.63万
  • 项目类别:
    Fellowship

相似国自然基金

Micro-LED芯片(模组)显示材料的研发及应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Micro-LED片上集成量子点像素光波导结 构设计与制造研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    100.0 万元
  • 项目类别:
    省市级项目
车载领域Micro-LED显示技术研发
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Micro-LED全彩化用钙钛矿纳米晶的稳定机理研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Micro LED晶圆级缺陷在线检测装备研发
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
金属氧化物TFT有源模拟PWM驱动Micro-LED显示研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
基于非辐射能量传递和胶体电流体微喷印的Micro-LED红光色转换技术
  • 批准号:
    62374142
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
Mini/Micro-LED显示器件表面功能结构冷冻磨切加工机理及光学性能研究
  • 批准号:
    52375426
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向AR/VR应用的III族氮化物有源驱动micro-LED显示阵列
  • 批准号:
    62375006
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
高效率全彩色micro-LED显示转移打印及性能研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Micro-Raman and Photoluminescence Spectrometer
显微拉曼和光致发光光谱仪
  • 批准号:
    534959777
  • 财政年份:
    2024
  • 资助金额:
    $ 61.63万
  • 项目类别:
    Major Research Instrumentation
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
  • 批准号:
    EP/Y032489/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.63万
  • 项目类别:
    Research Grant
Micro-manufacturing of tissue patterned organ-chips for accelerated deployment of new medicines (Patterned OrganChips)
用于加速新药部署的组织图案化器官芯片的微制造(图案化器官芯片)
  • 批准号:
    EP/Z531261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.63万
  • 项目类别:
    Research Grant
MICRO-CYCLE: Unravelling the role of microbial genomic traits in organic matter cycling and molecular composition along the river continuum
微循环:揭示微生物基因组特征在河流连续体有机物循环和分子组成中的作用
  • 批准号:
    NE/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.63万
  • 项目类别:
    Research Grant
SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
  • 批准号:
    2321862
  • 财政年份:
    2024
  • 资助金额:
    $ 61.63万
  • 项目类别:
    Cooperative Agreement
STTR Phase I: Innovating Micro-Light Emitting Diode (LED) Manufacturing with Novel Quantum Dot Micro-Patterning Technology
STTR 第一阶段:利用新型量子点微图案化技术创新微发光二极管 (LED) 制造
  • 批准号:
    2335283
  • 财政年份:
    2024
  • 资助金额:
    $ 61.63万
  • 项目类别:
    Standard Grant
網羅的micro-RNA解析による川崎病性冠動脈瘤リモデリング機序の解明と治療応用
通过综合micro-RNA分析和治疗应用阐明川崎病冠状动脉瘤的重塑机制
  • 批准号:
    24K10983
  • 财政年份:
    2024
  • 资助金额:
    $ 61.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
BRC-BIO: The origin and genetic makeup of rare plants: bridging micro- and macroevolution in the California Floristic Province
BRC-BIO:稀有植物的起源和基因组成:连接加州植物省的微观和宏观进化
  • 批准号:
    2334849
  • 财政年份:
    2024
  • 资助金额:
    $ 61.63万
  • 项目类别:
    Standard Grant
CAREER: Investigating and Combating Micro Signal Attacks in Video Conferencing
职业:调查和打击视频会议中的微信号攻击
  • 批准号:
    2337845
  • 财政年份:
    2024
  • 资助金额:
    $ 61.63万
  • 项目类别:
    Continuing Grant
Persistent micro- and nanoplastics as triggers for interstitial lung disease
持久性微塑料和纳米塑料是间质性肺病的诱因
  • 批准号:
    MR/Y012682/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.63万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了