Scaling limits and extreme values of Gibbs measures

吉布斯测度的尺度限制和极值

基本信息

  • 批准号:
    EP/T00472X/1
  • 负责人:
  • 金额:
    $ 25.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

In the area of probability, an increasingly important role has been played in recent years by random systems in which the randomness is observed in the spatial structure. Random systems defined on lattices have been introduced as discrete models that describe phase transitions for various phenomena, ranging from liquid in porous media to the spread of disease. Our understanding of some of these models, such as percolation and Ising model, has been improved greatly in the last decades, and works around it have led to Fields medals in 2006 and 2010.The aim of the proposed research is to open new directions for several long standing open questions in random systems on lattices. One circle of the questions concern the gradient Gibbs measures, which is a model of random surface introduced in the 1970s by Brascamp, Lebowitz and Lieb as a model for crystal interfaces. A long standing universality conjecture states that the large scale statistical properties of these random surfaces behave like a Gaussian free field. This has been partially confirmed by the work of Naddaf and Spencer (and others). The PI intends to improve the understanding of the gradient Gibbs measures, by quantifying the existing fluctuation theorems, settling the 20-year-old conjectures in surface tension (that describes the energy of a surface profile with a global tilt), and to establish some universality conjectures of the extremes of log-correlated fields.The second circle of questions concern the XY and the Villain models, which are mathematical models of liquid crystals, liquid helium and superconductors. Works around it have led to the Nobel Prize in Physics (Kosterlitz and Thouless) in 2016. Physicists predict that at low temperature the large scale property of these models are closely related to the Gaussian free field. This is known as the Gaussian spin wave conjecture. Some mathematical progress was made towards the conjecture in the 1970s and the early 1980s, building around the works of Frohlich, Simon and Spencer. However, methods developed in these papers (infrared bounds and Coulomb gas renormalization) were not sufficient to complete the proof of this conjecture. The PI intends to resolve this long-standing Gaussian spin wave conjecture for the XY and the Villain models in dimension three and higher.In doing so, the PI will develop a robust framework to study the scaling limits, fluctuations and large deviations of a large class of Gibbs measures. New bridges will be built between probability, statistical mechanics and mathematical analysis.
近年来,在概率领域,随机系统发挥了越来越重要的作用,在随机系统中,在空间结构中观察到随机性。定义在格子上的随机系统已经被引入作为描述各种现象的相变的离散模型,从多孔介质中的液体到疾病的传播。在过去的几十年里,我们对其中的一些模型,如渗流模型和Ising模型的理解有了很大的提高,并且围绕它的工作在2006年和2010年获得了菲尔兹奖。其中一个问题涉及梯度吉布斯测度,这是Brascamp、Lebowitz和Lieb在20世纪70年代引入的随机表面模型,作为晶体界面的模型。一个长期存在的普遍性猜想指出,这些随机表面的大尺度统计特性表现得像一个高斯自由场。Naddaf和Spencer(以及其他人)的工作部分证实了这一点。PI旨在通过量化现有的波动定理,解决表面张力20年的问题,提高对梯度吉布斯测度的理解。(描述具有全局倾斜的表面轮廓的能量),并建立对数相关场的极端的一些普适性模型。第二圈问题涉及XY和Villain模型,它们是液晶、液氦和超导体的数学模型。围绕它的工作导致了2016年的诺贝尔物理学奖(Kosterlitz和Kosterless)。物理学家预测,在低温下,这些模型的大尺度性质与高斯自由场密切相关。这被称为高斯自旋波猜想。在1970年代和1980年代初,围绕着Frohlich、Simon和Spencer的作品,在数学上取得了一些进展。然而,在这些论文中开发的方法(红外边界和库仑气体重整化)不足以完成这一猜想的证明。PI的目标是解决XY和Villain模型在三维及更高维度上的高斯自旋波猜想。在此过程中,PI将开发一个强大的框架来研究一大类Gibbs测度的标度极限,波动和大偏差。在概率论、统计力学和数学分析之间将建立新的桥梁。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Wu其他文献

Comparisons of a class of IGCC polygeneration/power plants using calcium/chemical looping combinations
使用钙/化学循环组合的一类 IGCC 多联产/发电厂的比较
Event-driven observer-based control for distributed parameter systems using mobile sensors and actuators
使用移动传感器和执行器的分布式参数系统的事件驱动、基于观察者的控制
Strain sensing based on a microbottle resonator with cleaned-up spectrum
基于具有净化频谱的微瓶谐振器的应变传感
  • DOI:
    10.1364/ol.43.004715
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Yiheng Yin;Mengxin Ren;Wei Wu;Weisheng Zhao;Jiang Nan;Zhenyi Zheng;Yue Zhang;Ming Ding
  • 通讯作者:
    Ming Ding
Synthesis and formulation of vinyl-containing polyacids for improved light-cured glass-ionomer cements
用于改进光固化玻璃离子水门汀的含乙烯基多元酸的合成和配制
  • DOI:
    10.1016/s0014-3057(02)00301-4
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Wei Wu;D. Xie;A. Puckett;J. Mays
  • 通讯作者:
    J. Mays
Decreased miR-4512 levels in monocytes and macrophages of individuals with systemic lupus erythematosus contribute to innate immune activation and neutrophil NETosis by targeting TLR4 and CXCL2
系统性红斑狼疮患者单核细胞和巨噬细胞中 miR-4512 水平降低,通过靶向 TLR4 和 CXCL2 促进先天免疫激活和中性粒细胞 NETosis
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Binbin Yang;Xinwei Huang;Shuangyan Xu;Li Li;Wei Wu;Yunjia Dai;Mingxia Ge;Limei Yuan;Wenting Cao;Meng Yang;Yongzhuo Wu;Danqi Deng
  • 通讯作者:
    Danqi Deng

Wei Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Wu', 18)}}的其他基金

MCA: Support Engaging and Inclusive STEM Education with Extended Reality (SEISE-XR)
MCA:通过扩展现实支持参与性和包容性 STEM 教育 (SEISE-XR)
  • 批准号:
    2322172
  • 财政年份:
    2023
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Standard Grant
Supporting Active Learning in Introductory STEM Courses with Extended Reality
通过扩展现实支持 STEM 入门课程中的主动学习
  • 批准号:
    2126723
  • 财政年份:
    2021
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Standard Grant
SBIR Phase I: High-Salinity Produced Water Management by Recovering Solid Waste with Low Grade Thermal Energy
SBIR 第一阶段:利用低品位热能回收固体废物来管理高盐度采出水
  • 批准号:
    1938476
  • 财政年份:
    2019
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Standard Grant
EXP: Collaborative Research: Cultivating Apprenticeship Learning for Architecture, Engineering, and Construction Using Mixed Reality
EXP:协作研究:使用混合现实培养建筑、工程和施工的学徒学习
  • 批准号:
    1735804
  • 财政年份:
    2017
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Standard Grant
Atomically Precise, Low-cost Manufacturing of Plasmonic Nano-Gaps for Chemical Sensing, Health Diagnostics and Optical Communication
用于化学传感、健康诊断和光通信的原子级精确、低成本的等离激元纳米间隙制造
  • 批准号:
    1635612
  • 财政年份:
    2016
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Standard Grant
Planned Missing Research Designs: Power and Validity of Planned Missing Data Designs in Longitudinal Research
计划缺失研究设计:纵向研究中计划缺失数据设计的功效和有效性
  • 批准号:
    1053160
  • 财政年份:
    2011
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Standard Grant
RAPID: Request for Ground-Verification of the Luquillo Critical Zone Observatory LIDAR Overflight
RAPID:请求对卢基约关键区天文台激光雷达飞越进行地面验证
  • 批准号:
    1038497
  • 财政年份:
    2010
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Standard Grant
RAPID: Quantifying the potential impacts of the BP Deepwater Horizon oil spill on carbon services of salt marshes along the northern Gulf Coast
RAPID:量化 BP 深水地平线漏油事件对墨西哥湾北部沿岸盐沼碳服务的潜在影响
  • 批准号:
    1048342
  • 财政年份:
    2010
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Standard Grant
RI-Small: Statistical Decoding Models to Improve the Performance of Motor Cortical Brain-Machine Interfaces
RI-Small:提高运动皮质脑机接口性能的统计解码模型
  • 批准号:
    0916154
  • 财政年份:
    2009
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Standard Grant

相似海外基金

Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
  • 批准号:
    EP/Y027795/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Research Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
  • 批准号:
    2337375
  • 财政年份:
    2024
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Continuing Grant
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
  • 批准号:
    EP/Y020839/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Research Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
  • 批准号:
    24K06843
  • 财政年份:
    2024
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
  • 批准号:
    2340481
  • 财政年份:
    2024
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Continuing Grant
Pushing the limits of electronic delocalization in organic molecules
突破有机分子电子离域的极限
  • 批准号:
    DE240100664
  • 财政年份:
    2024
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Discovery Early Career Researcher Award
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
  • 批准号:
    EP/Z000394/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Research Grant
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
  • 批准号:
    EP/Z532836/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.06万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了