RCN: Extreme Biophysics - The Molecular Limits of Life

RCN:极限生物物理学 - 生命的分子极限

基本信息

  • 批准号:
    1817845
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Much of life on Earth exists in extreme environments. These environments can be very hot or very cold, they can have very high pressure, they can be extremely acidic or alkaline, and they can contain very harsh chemicals. Cells and the large molecules (e.g. proteins, DNA, membranes) that keep cells alive are highly sensitive to environmental conditions. In the laboratory it can be shown that under extreme conditions these molecules are degraded and their biological functions are abrogated. In contrast, in their natural environments, cells manage to survive and thrive under extreme conditions. It is of interest to understand the mechanisms whereby cells and biological macromolecules adapt to tolerate extreme environments, and how changing physical and chemical environments have affected evolution during billions of years on Earth. This Research Coordination Network (RCN) will bring together scientists from very different fields to examine the limits of life on Earth. Besides fundamental understanding of the rules of life, detailed understanding of how biomolecules and cells have evolved to function in extreme environments will help in the development of novel industrial and biotechnological processes for green chemistry applications, bioremediation and bio-therapeutics. Improved understanding of life in the wide range of extreme conditions compatible with life will also inform the search for life on other planets and provide clues about the origins of life on Earth. This RCN will foster the truly novel cross-disciplinary collaborations that are needed to understand life in extreme environments. It will fund scientific meetings, workshops, and lab exchange programs to foment cross-pollination. The RCN will also contribute towards the development of training programs for undergraduate and graduate students and postdoctoral fellows at the interface between the very different disciplines required to achieve convergence in this research area. Much of the Earth's biosphere and biomass are found under extreme conditions of temperature (T), pressure (P), pH and salt (I). It is already well understood that the physical (e.g. structure, stability, interactions, solubility) and functional properties of all biological molecules (e.g. proteins, DNA, membranes) are highly sensitive to conditions of T, P, pH and I. The molecular and cellular mechanisms used for adaptation for life under extreme conditions are poorly understood. This Research Coordination Network on Extreme Biophysics will stimulate the convergence of disciplines (e.g. geochemistry, oceanography, astrophysics, computation, biochemistry, microbiology and geomicrobiology, analytical chemistry, genomics, molecular and cellular biophysics) needed to understand how life evolved for 4 billion years in response to changing conditions on Earth. Genomes from a large number of extremophilic organisms are now available, providing a useful starting point for a systematic study of molecular evolution of organisms in different environments. The moment is ripe for the development of the field of extreme biophysics. The central goal of this RCN is to regularly gather scientists with vastly different backgrounds to examine systematically the biophysical and biochemical basis for life under extreme conditions. Meetings, workshops and lab visits will be the vehicle for exchange and collaboration. The outcomes of the RCN include (1) identification of critical questions in extreme molecular and cellular biophysics, (2) identification of the promising research areas and systems useful for study, (3) progress with technological and conceptual road-blocks, (4) cross-disciplinary collaborative efforts to attract funding for research in this area, (5) pathways for training of young scientists to prepare them for a truly this multidisciplinary approach to study life on Earth and beyond. This RCN is jointly funded by the Molecular Biophysics Cluster in the Division of Molecular and Cellular Biosciences and the Physics of Living Systems Program in the Division of Physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球上的大部分生命都存在于极端环境中。这些环境可能非常热或非常冷,它们可能具有非常高的压力,它们可能是极酸性或碱性的,并且它们可能含有非常苛刻的化学物质。细胞和维持细胞存活的大分子(如蛋白质、DNA、膜)对环境条件高度敏感。在实验室中可以证明,在极端条件下,这些分子被降解,其生物学功能被废除。相比之下,在自然环境中,细胞在极端条件下能够存活和茁壮成长。了解细胞和生物大分子适应极端环境的机制,以及变化的物理和化学环境如何影响地球上数十亿年的进化,是很有意义的。这个研究协调网络(RCN)将汇集来自不同领域的科学家,研究地球上生命的极限。除了对生命规则的基本理解外,详细了解生物分子和细胞如何在极端环境中进化功能将有助于开发新的工业和生物技术过程,用于绿色化学应用,生物修复和生物治疗。在与生命相容的各种极端条件下,对生命的进一步了解也将为在其他行星上寻找生命提供信息,并为地球上生命的起源提供线索。该RCN将促进真正新颖的跨学科合作,以了解极端环境中的生命。它将资助科学会议,研讨会和实验室交流计划,以促进异花授粉。RCN还将为本科生和研究生以及博士后研究员的培训计划的发展做出贡献,这些培训计划是在这一研究领域实现融合所需的非常不同的学科之间的接口。地球的生物圈和生物量大部分是在温度(T)、压力(P)、pH和盐(I)的极端条件下发现的。已经很好地理解,所有生物分子(例如蛋白质、DNA、膜)的物理(例如结构、稳定性、相互作用、溶解性)和功能性质对T、P、pH和I的条件高度敏感。人们对极端条件下适应生命的分子和细胞机制知之甚少。这一极端生物物理学研究协调网络将促进了解40亿年来生命是如何随着地球上不断变化的条件而演变的所需学科(例如地球化学、海洋学、天体物理学、计算、生物化学、微生物学和地球微生物学、分析化学、基因组学、分子和细胞生物物理学)的融合。目前已经获得了大量嗜极端生物的基因组,为系统研究不同环境中生物的分子进化提供了一个有用的起点。发展极端生物物理学领域的时机已经成熟。这个RCN的中心目标是定期聚集具有截然不同背景的科学家,系统地研究极端条件下生命的生物物理和生物化学基础。会议、研讨会和实验室参观将成为交流和合作的载体。RCN的成果包括(1)确定极端分子和细胞生物物理学中的关键问题,(2)确定有前途的研究领域和对研究有用的系统,(3)技术和概念障碍的进展,(4)跨学科合作努力,以吸引该领域研究的资金,(5)培训年轻科学家的途径,使他们为真正的多学科方法研究地球及其他地区的生命做好准备。 该RCN由分子和细胞生物科学部的分子生物物理学小组和物理学部的生命系统物理学项目共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Catherine Royer其他文献

Chirurgie du phéochromocytome après défaillance cardiaque avec pose d’une assistance circulatoire extracorporelle (ECMO) : délai avant surrénalectomie et prise en charge périopératoire
  • DOI:
    10.1016/j.anrea.2015.07.376
  • 发表时间:
    2015-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sophie Di Maria;Maxime Bouilliant-Linet;Catherine Royer;Carmen Gaillat;Barbara Schaup;Fabrice Menegaux;Mathieu Raux
  • 通讯作者:
    Mathieu Raux
Pressure Effects on Folding of an RNA G-Quadruplex Structure
  • DOI:
    10.1016/j.bpj.2018.11.1928
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Balasubramanian Harish;Jinqiu Wang;Eric Hayden;Catherine Royer
  • 通讯作者:
    Catherine Royer
Pressure Induced SOS Response in <em>Escherichia coli</em> Involves Mrr Restriction Endonuclease Dissociation
  • DOI:
    10.1016/j.bpj.2017.11.852
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Anais Bourges;Oscar E. Torres M.;Anirban Ghosh;Wubishet Tadesse;Gilles Labesse;Nathalie Declerck;Abram Aertsen;Catherine Royer
  • 通讯作者:
    Catherine Royer
Intérêt de la fixation myocardique lors de la scintigraphie I<sup>123</sup>mIBG réalisée dans le bilan du phéochromocytome
  • DOI:
    10.1016/j.anrea.2015.07.147
  • 发表时间:
    2015-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Maxime Bouilliant-Linet;Sophie Di Maria;Géraldine Bera;Carmen Gaillat;Catherine Royer;Barbara Schaup;Fabrice Menegaux;Mathieu Raux
  • 通讯作者:
    Mathieu Raux

Catherine Royer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Catherine Royer', 18)}}的其他基金

Mechanisms of Adaptation of Extracellular Nucleases to Extreme Conditions
胞外核酸酶适应极端条件的机制
  • 批准号:
    2311258
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
High Pressure Small Angle X-ray Scattering Workshop
高压小角X射线散射车间
  • 批准号:
    2014954
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Transcriptional Adaptation and Response to Pressure
合作研究:转录适应和对压力的反应
  • 批准号:
    2019471
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Physical Mechanisms of Cell State Transitions: Size Homeostasis in Budding Yeast
细胞状态转变的物理机制:出芽酵母的大小稳态
  • 批准号:
    1806638
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
2017 Proteins: Exploring the Role of Proteins as Cellular Organizers by Combining Experiment and Theory
2017 蛋白质:实验与理论相结合探索蛋白质作为细胞组织者的作用
  • 批准号:
    1662573
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Exploring RNA conformational transitions using high pressure
利用高压探索 RNA 构象转变
  • 批准号:
    1610691
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Pressure-Based Mapping of Protein Free Energy Landscapes
基于压力的蛋白质自由能景观图
  • 批准号:
    1514575
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Computational Studies of Folding and Dynamics of Proteins
蛋白质折叠和动力学的计算研究
  • 批准号:
    1050966
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似海外基金

RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Rossbypalooza 2024: A Student-led Summer School on Climate and Extreme Events Conference; Chicago, Illinois; July 22-August 2, 2024
Rossbypalooza 2024:学生主导的气候和极端事件暑期学校会议;
  • 批准号:
    2406927
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
MCA: Cellular Responses to Thermal Stress in Antarctic Fishes: Dynamic Re-structuring of the Proteome in Extreme Stenotherms
MCA:南极鱼类对热应激的细胞反应:极端钝温鱼蛋白质组的动态重组
  • 批准号:
    2322117
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
The demographic consequences of extreme weather events in Australia
澳大利亚极端天气事件对人口的影响
  • 批准号:
    DP240102733
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
Attributable impacts from extreme weather events
极端天气事件的影响
  • 批准号:
    NE/Z000203/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Femtosecond X-Ray Diffraction Studies of Crystalline Matter Deforming under Extreme Loading
极端载荷下晶体物质变形的飞秒 X 射线衍射研究
  • 批准号:
    EP/X031624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
REU Site: Research Experience for Undergraduates in Resilience Against Extreme Weather Events
REU 网站:本科生抵御极端天气事件的研究经验
  • 批准号:
    2349250
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Advancing understanding of interannual variability and extreme events in the thermal structure of large lakes under historical and future climate scenarios
增进对历史和未来气候情景下大型湖泊热结构的年际变化和极端事件的了解
  • 批准号:
    2319044
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了