Quantum Bio-inspired Energy harvesting (QuBE)
量子仿生能量收集 (QuBE)
基本信息
- 批准号:EP/T007214/1
- 负责人:
- 金额:$ 45.64万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The central hypothesis of this project is that biological inspiration combined with engineering at the microscopic scale, where quantum effects dominate, will enable new kinds of nano-antennae for applications in photovoltaics, optical sensing and power transfer. Unlocking sustainable sources of energy is a major challenge faced by society: increasing global energy needs and rising carbon dioxide levels have led to concerns about fossil fuels which are our current principal source of power. Not only are fossil fuels a fast-dwindling resource, their consumption is also believed to have a highly negative impact on our climate. Sunlight, despite being abundant and free, only constitutes a relatively minor fraction in our energy mix, with the widespread uptake of light-harvesting technologies being hampered by their relatively high cost and the limited flexibility of existing photovoltaic technologies. Meanwhile, sunlight is Nature's power source: it directly or indirectly sustains almost all life of Earth. Nature has optimised biological structures over hundreds of millions of years to produce finely tuned and highly efficient solutions for the energy capture, conversion, storage, and delivery within living organisms. On the atomic and molecular scale, energy is `quantised': it only occurs in tiny chunks, for example as the energy of a photon of light emitted from an excited atom. The most efficient way to capture, transport and convert energy will thus exploit our best understanding of the relevant physics, i.e. quantum theory. Indeed, there is now strong evidence that quantum effects are to some degree present in natural photosynthesis, raising the tantalising possibility that they may even play a functional role in the process. This motivates the study of quantum-enhanced artificial light-harvesting as a potential solution to the energy problem.This project therefore aims to combine the state-of-the-art in controlling and designing quantum-engineered condensed matter nanostructures with inspiration from Nature's toolbox of proven and robust design principles for photosynthesis. Motivated by the aim to develop blueprints for the next generation of sustainable energy harvesting technologies, it will focus on designing novel kind of antennae which feature non-classical, quantum-enhanced performance. The core underlying scientific challenge is to develop the theory that allows us to understand, engineer, and control the interplay between quantum behaviour (wave-like interference and superposition states) and the more destructive process of exchanging energy with the wider surroundings through unavoidable physical interactions. When both these aspects govern the behaviour of collections of interacting nanostructures - either complex molecules or artificial semiconductor structures - this opens a rich playground of physical effects situated squarely between the quantum and the classical world. This is the regime in which natural photosynthesis operates, and the aim of this project is to find ways of replicating and possibly even surpassing Nature's performance in the crucial first step of irreversibly capturing energy from light.Besides laying scientific groundwork for new kinds of bio-inspired cheap and flexible photovoltaics, this project will further our fundamental understanding of light-matter interactions of relevance for a range of other applications. More broadly, this project fits into the exciting scientific endeavour of understanding and controlling Nature at the quantum level. This is one of the great scientific challenges of the coming decades, with the potential to transform the technologies we use in our everyday lives. Currently the potential of quantum effects for practical applications is limited to processing data, transmitting information, and exquisite sensing. This project may be a step towards enabling new ways of generating clean energy.
该项目的核心假设是,生物灵感与微观尺度的工程相结合,量子效应占主导地位,将使新型纳米天线能够应用于光电子学,光学传感和功率传输。开发可持续能源是社会面临的一项重大挑战:全球能源需求的增加和二氧化碳水平的上升导致人们对化石燃料的担忧,而化石燃料是我们目前的主要动力来源。化石燃料不仅是一种快速减少的资源,而且据信其消费也对我们的气候产生了非常负面的影响。尽管阳光充足且免费,但在我们的能源结构中只占相对较小的一部分,而捕光技术的广泛采用受到其相对较高的成本和现有光伏技术有限的灵活性的阻碍。同时,阳光是大自然的能量来源:它直接或间接地维持着地球上几乎所有的生命。自然界已经优化了数亿年的生物结构,为生物体内的能量捕获、转换、储存和传递提供了精细调整和高效的解决方案。在原子和分子尺度上,能量是“量子化”的:它只以微小的块出现,例如从激发原子发射的光子的能量。因此,捕获、传输和转换能量的最有效方法将利用我们对相关物理学的最佳理解,即量子理论。事实上,现在有强有力的证据表明,量子效应在某种程度上存在于自然光合作用中,这提高了它们甚至可能在这一过程中发挥功能性作用的诱人可能性。这激发了量子增强人工捕光作为能源问题的潜在解决方案的研究。因此,该项目旨在将控制和设计量子工程凝聚态纳米结构的最新技术与自然界成熟而稳健的光合作用设计原理工具箱的灵感相结合。出于为下一代可持续能源收集技术开发蓝图的目的,它将专注于设计具有非经典量子增强性能的新型天线。核心的潜在科学挑战是发展理论,使我们能够理解,工程师和控制量子行为(波状干涉和叠加态)之间的相互作用,以及通过不可避免的物理相互作用与更广泛的环境交换能量的更具破坏性的过程。当这两个方面支配着相互作用的纳米结构集合的行为时--无论是复杂的分子还是人工半导体结构--这就打开了一个位于量子世界和经典世界之间的丰富的物理效应的游乐场。这是自然光合作用的运作机制,该项目的目的是找到复制甚至超越自然性能的方法,这是从光中不可逆地捕获能量的关键第一步。除了为新型生物启发的廉价灵活的光合作用奠定科学基础外,该项目将进一步加深我们对与一系列其他应用相关的光-物质相互作用的基本理解。更广泛地说,这个项目符合在量子水平上理解和控制自然的令人兴奋的科学努力。这是未来几十年的重大科学挑战之一,有可能改变我们日常生活中使用的技术。目前,量子效应在实际应用中的潜力仅限于处理数据、传输信息和精密传感。该项目可能是朝着实现产生清洁能源的新方法迈出的一步。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The dark side of energy transport along excitonic wires: On-site energy barriers facilitate efficient, vibrationally mediated transport through optically dark subspaces.
- DOI:10.1063/5.0023702
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:S. Davidson;A. Fruchtman;F. A. Pollock;E. Gauger
- 通讯作者:S. Davidson;A. Fruchtman;F. A. Pollock;E. Gauger
Localisation determines the optimal noise rate for quantum transport
定位决定了量子传输的最佳噪声率
- DOI:10.1088/1367-2630/ac3b2c
- 发表时间:2021
- 期刊:
- 影响因子:3.3
- 作者:Coates A
- 通讯作者:Coates A
The dark side of energy transport along excitonic wires: On-site energy barriers facilitate efficient, vibrationally-mediated transport through optically dark subspaces
沿着激子线的能量传输的黑暗面:现场能量势垒促进通过光学暗子空间的高效、振动介导的传输
- DOI:10.48550/arxiv.2007.15993
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Davidson S
- 通讯作者:Davidson S
Large-scale FRET simulations reveal the control parameters of phycobilisome light-harvesting complexes.
- DOI:10.1098/rsif.2022.0580
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
From Goldilocks to twin peaks: multiple optimal regimes for quantum transport in disordered networks.
从金发姑娘到双峰:无序网络中量子传输的多个最优机制。
- DOI:10.1039/d2cp04935j
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Coates AR
- 通讯作者:Coates AR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erik Gauger其他文献
Bio-inspired quantum energy harvesting with collective light-matter effects
具有集体光物质效应的仿生量子能量收集
- DOI:
10.1117/12.3004404 - 发表时间:
2024 - 期刊:
- 影响因子:3.7
- 作者:
Erik Gauger - 通讯作者:
Erik Gauger
Erik Gauger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erik Gauger', 18)}}的其他基金
Understanding and engineering dissipation in nanoscale quantum devices
了解和设计纳米级量子器件的耗散
- 批准号:
EP/T01377X/1 - 财政年份:2020
- 资助金额:
$ 45.64万 - 项目类别:
Research Grant
相似国自然基金
骨胶原(Bio-Oss Collagen)联合龈下喷砂+骨皮质切开术治疗
根分叉病变的临床疗效研究
- 批准号:2024JJ9542
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
智能双栅调控InSe Bio-FET可控构筑与原位细胞传感机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于通用型 M13-Bio 噬菌体信号放大的动态
光散射免疫传感检测平台的建立及机制研究
- 批准号:Q24C200014
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
2D/2D BiO2-x/graphyne异质结光热活化过硫酸盐降解水体中抗生素的机理研究
- 批准号:LY23E080003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
过渡金属掺杂与原位外延生长Z型异质结协同增强BiO2-x的宽光谱光催化活化分子氧去除水中难降解微塑料的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:
Z型异质结“(金属氧化物MOx@薄层碳TC)/BiO1-xCl”的可控构筑及其光催化性能的研究
- 批准号:22005126
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
BIO促进脂肪来源干细胞修复急性心肌梗死的作用及机制
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
6-BIO 抗肝脏衰老的作用与作用机制研究
- 批准号:19ZR1438800
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于MOFs热解构建薄层碳包覆的BiO1-xX基Z型异质结及其光催化水氧化苯制苯酚反应的研究
- 批准号:
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
可回收MFe2O4/二维 (BiO)2CO3 复合纳米矿物材料光降解再生水中顽固型有机物机理
- 批准号:41877481
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 45.64万 - 项目类别:
Standard Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 45.64万 - 项目类别:
Continuing Grant
Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
- 批准号:
DP240102315 - 财政年份:2024
- 资助金额:
$ 45.64万 - 项目类别:
Discovery Projects
PFI-TT: Bio-inspired enhancement of concrete for carbon sequestration and longevity
PFI-TT:仿生增强混凝土以实现碳封存和长寿
- 批准号:
2329856 - 财政年份:2024
- 资助金额:
$ 45.64万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 45.64万 - 项目类别:
Standard Grant
RII Track-4: NSF: Bio-inspired Solutions to Prevent Soil Erosion in Farmland and Scouring in Fluvial Regions
RII Track-4:NSF:防止农田水土流失和河流地区冲刷的仿生解决方案
- 批准号:
2327384 - 财政年份:2024
- 资助金额:
$ 45.64万 - 项目类别:
Standard Grant
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
- 批准号:
2338171 - 财政年份:2024
- 资助金额:
$ 45.64万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track M: Nature Inspired Bio-manufactured Terminal Hydroxylated Fatty Acid Copolyesters
NSF 融合加速器轨道 M:受自然启发的生物制造末端羟基化脂肪酸共聚酯
- 批准号:
2344366 - 财政年份:2024
- 资助金额:
$ 45.64万 - 项目类别:
Standard Grant
CAREER: Geometric and Electronic Contributions to Bio-inspired Reactivities of Heme-superoxide Intermediates
职业:几何和电子对血红素超氧化物中间体的仿生反应活性的贡献
- 批准号:
2422277 - 财政年份:2024
- 资助金额:
$ 45.64万 - 项目类别:
Continuing Grant
CAREER: Toward energy-efficient bio-inspired magnonic processing with nanomagnetic arrays
职业:利用纳米磁性阵列实现节能的仿生磁力处理
- 批准号:
2339475 - 财政年份:2024
- 资助金额:
$ 45.64万 - 项目类别:
Continuing Grant