A New Approach to Bernoulli Convolutions and Salem Numbers
伯努利卷积和塞勒姆数的新方法
基本信息
- 批准号:EP/T010835/1
- 负责人:
- 金额:$ 3.66万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sets and measures exhibiting some kind of self-similar fractal structure are extremely common in nature, and come up surprisingly often in pure mathematics. Bernoulli convolutions are perhaps the simplest examples of fractal measures `with overlaps' and the question of the Hausdorff dimension of Bernoulli convolutions is an important mathematical problem, originally dating from the 1930s. The first examples of Bernoulli convolutions of dimension less than one were produced by Erdos in 1939, shortly after leaving the University of Manchester. Since then, researchers working across many mathematical disciplines, including number theory, harmonic analysis, additive combinatorics, fractal geometry and dynamical systems, have sought to understand better the dimension theory of Bernoulli convolutions. There has been very substantial recent progress but a complete theory remains elusive.In this project we seek to combine recent progress of the applicant together with Akiyama, Feng and Persson on the study of Bernoulli convolutions using a family of matrices with ideas of Mercat that allow one to fully describe these matrices in particular cases. In particular, we will spend time visiting Mercat in Marseille and by combining our ideas will show that a particular Bernoulli convolution associated to a Salem number has dimension one. This is a first step towards proving the famous conjecture that the only parameters giving rise to Bernoulli convolutions of dimension less than one are Pisot numbers, the examples studied by Erdos in the 1930s.
表现出某种自相似分形结构的集合和测度在自然界中非常常见,在纯数学中也经常出现。伯努利卷积也许是最简单的例子分形措施“与重叠”和问题的豪斯多夫维数的伯努利卷积是一个重要的数学问题,最初可以追溯到20世纪30年代。第一个例子伯努利卷积的维数小于一是由鄂尔多斯在1939年,不久后离开曼彻斯特大学。从那时起,许多数学学科的研究人员,包括数论,调和分析,加法组合学,分形几何和动力系统,都试图更好地理解伯努利卷积的维数理论。最近已经有了很大的进展,但一个完整的理论仍然难以捉摸。在这个项目中,我们试图结合联合收割机的申请人与秋山,冯和Ewesson在伯努利卷积的研究,使用一个家庭的矩阵与思想的Mercat,允许一个充分描述这些矩阵在特定情况下的最新进展。特别是,我们将花时间访问Mercat在马赛和结合我们的想法将表明,一个特定的伯努利卷积相关的塞勒姆数的维度。这是第一步证明著名的猜想,唯一的参数引起伯努利卷积的维数小于一个是皮索数,研究的例子鄂尔多斯在20世纪30年代。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measures on the Spectra of Algebraic Integers
代数整数谱的测度
- DOI:10.48550/arxiv.2102.07581
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kempton T
- 通讯作者:Kempton T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Kempton其他文献
Thomas Kempton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
- 批准号:
EP/Z000246/1 - 财政年份:2025
- 资助金额:
$ 3.66万 - 项目类别:
Research Grant
Contaminants of emerging concern: An integrated approach for assessing impacts on the marine environment. Acronym: CONTRAST
新出现的污染物:评估对海洋环境影响的综合方法。
- 批准号:
10093180 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
EU-Funded
An engineering biology approach for sustainable production of omega 3 and pigments from microalgae
一种利用微藻可持续生产 omega 3 和色素的工程生物学方法
- 批准号:
10107393 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Launchpad
An Integrated Life-course Approach for Person-centred Solutions and Care for Ageing with Multi-morbidity in the European Regions - STAGE; Stay Healthy Through Ageing
欧洲地区以人为本的解决方案和针对多种疾病的老龄化护理的综合生命全程方法 - STAGE;
- 批准号:
10112787 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
EU-Funded
「生きづらさ」を抱える妊産婦に対するnon-stigmatizing approachの開発
为正在经历“生活困难”的孕妇制定一种非侮辱性的方法
- 批准号:
24K14025 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Host-Guest Complexation: A Modular Approach for Structural Control (MAS-Control) in Supramolecular Polymerization
主客体络合:超分子聚合中结构控制(MAS-Control)的模块化方法
- 批准号:
EP/Y027965/1 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Fellowship
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Research Grant
How do healthy brains drive a healthy economy? A novel occupational neuroscience approach
健康的大脑如何推动健康的经济?
- 批准号:
MR/X034100/1 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Fellowship
Haptic Shared Control Systems And A Neuroergonomic Approach To Measuring System Trust
触觉共享控制系统和测量系统信任的神经工学方法
- 批准号:
EP/Y00194X/1 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Research Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316612 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Standard Grant














{{item.name}}会员




