Bridgeland stability on Fukaya categories of Calabi-Yau 2-folds
Calabi-Yau 2 倍 Fukaya 类别上的 Bridgeland 稳定性
基本信息
- 批准号:EP/T012749/1
- 负责人:
- 金额:$ 66.58万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two key ideas in mathematics are symmetry and classification. Symmetry is ubiquitous in mathematics, and is the source of endless fascination and study. Many symmetries are well-known, for example the symmetries of a cube or sphere, but others are far more mysterious and their study has led to great mathematical advances. Mirror symmetry of Calabi-Yau manifolds has excited much research in mathematics (for example, in Algebraic Geometry and Symplectic Topology), and also in theoretical physics through String Theory, but in general remains poorly understood. Mirror symmetry involves relating the geometry of two Calabi-Yau manifolds: one aspect of the symmetry is called the "A-model" and the other is the "B-model". Whilst there have been advances in understanding the B-model, we seem to currently lack the tools to adequately tackle the A-model. Our research proposal aims to give a complete understanding of the A-model for Calabi-Yau 2-folds, which would be a major achievement.Classification results enable us to describe a large family of mathematical objects that are typically hard to understand in a simpler manner. A typical strategy for classification results in geometry, going back at least to Riemann's Uniformisation Theorem, is to find a special representative for a given class of geometric objects. The challenge then is to determine whether such a special representative exists and, when it does, whether it is unique. In our setting, the special representatives are called special Lagrangians and their uniqueness is known, but the problem of finding them in a given class has proven to be very difficult, despite many attempts to solve it. Our proposal aims to solve this problem for special Lagrangians completely in the setting of Calabi-Yau 2-folds.The proposed research will combine techniques from distinct areas of mathematics (Symplectic Topology and Geometric Analysis), and it is often the case that some of the most exciting breakthroughs in mathematics occur when different areas are brought together. The connections to further areas of mathematics and theoretical physics mean that the impact of the proposed research is likely to be far-reaching and inspire many new research directions which will have a profound effect on the field.
数学中的两个关键概念是对称性和分类。对称性在数学中无处不在,是无穷的魅力和研究的源泉。许多对称性是众所周知的,例如立方体或球体的对称性,但其他对称性则更加神秘,对它们的研究导致了数学的巨大进步。卡-丘流形的镜像对称性激发了数学(例如代数几何和辛拓扑)以及理论物理学(通过弦理论)的许多研究,但总体上仍然知之甚少。镜像对称涉及到两个卡-丘流形的几何关系:对称的一个方面被称为“A-模型”,另一个是“B-模型”。虽然在理解B模型方面取得了进展,但我们目前似乎缺乏足够的工具来处理A模型。我们的研究计划旨在全面理解Calabi-Yau 2-folds的A模型,这将是一项重大成就。分类结果使我们能够以更简单的方式描述一大系列通常难以理解的数学对象。一个典型的战略分类结果的几何,至少可以追溯到黎曼的均匀化定理,是找到一个特殊的代表性为一类给定的几何对象。因此,面临的挑战是确定是否存在这样一位特别代表,如果存在,确定其是否独一无二。在我们的设置中,特殊代表被称为特殊拉格朗日量,并且它们的唯一性是已知的,但是在给定类中找到它们的问题已经被证明是非常困难的,尽管有许多尝试来解决这个问题。我们的建议旨在解决这个问题的特殊拉格朗日完全设置的卡-丘2倍。拟议的研究将联合收割机技术从不同的数学领域(辛拓扑和几何分析),而且通常情况下,数学中一些最令人兴奋的突破发生在不同领域结合在一起时。与数学和理论物理的进一步领域的联系意味着拟议研究的影响可能是深远的,并激发了许多新的研究方向,这将对该领域产生深远的影响。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Symplectic $\mathbb{C}^*$-manifolds II: Morse-Bott-Floer Spectral Sequences
辛 $mathbb{C}^*$-流形 II:Morse-Bott-Floer 谱序列
- DOI:10.48550/arxiv.2304.14384
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ritter Alexander F.
- 通讯作者:Ritter Alexander F.
Ancient solutions in Lagrangian mean curvature flow
拉格朗日平均曲率流的古代解
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Lambert Ben
- 通讯作者:Lambert Ben
Neck pinches along the Lagrangian mean curvature flow of surfaces
沿表面拉格朗日平均曲率流的颈缩
- DOI:10.48550/arxiv.2208.11054
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Lotay Jason D.
- 通讯作者:Lotay Jason D.
The correspondence induced on the pillowcase by the earring tangle
耳环缠结在枕套上引起的对应
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Cazassus, G
- 通讯作者:Cazassus, G
Neck pinch singularities and Joyce conjectures in Lagrangian mean curvature flow with circle symmetry
圆对称拉格朗日平均曲率流中的颈缩奇点和乔伊斯猜想
- DOI:10.48550/arxiv.2305.05744
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lotay Jason D.
- 通讯作者:Lotay Jason D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dominic Joyce其他文献
Dominic Joyce的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dominic Joyce', 18)}}的其他基金
Cohomological Hall Algebras of Calabi-Yau 3-folds
Calabi-Yau 3 次上同调霍尔代数
- 批准号:
EP/X040674/1 - 财政年份:2023
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
String Topology, J-holomorphic Curves, and Symplectic Geometry
弦拓扑、J 全纯曲线和辛几何
- 批准号:
EP/J016950/1 - 财政年份:2012
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
Motivic invariants and categorification
动机不变量和分类
- 批准号:
EP/I033343/1 - 财政年份:2011
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
Lagrangian Floer cohomology and Khovanov homology
拉格朗日弗洛尔上同调和科万诺夫同调
- 批准号:
EP/H035303/1 - 财政年份:2010
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
Ringel-Hall algebras of Calabi-Yau 3-folds and Donaldson-Thomas theory
Calabi-Yau 3 重的 Ringel-Hall 代数和 Donaldson-Thomas 理论
- 批准号:
EP/G068798/1 - 财政年份:2009
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
Stability conditions on derived categories
派生类别的稳定性条件
- 批准号:
EP/F038461/1 - 财政年份:2008
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
Homological Mirror Symmetry for toric stacks
复曲面堆叠的同调镜像对称
- 批准号:
EP/F055366/1 - 财政年份:2008
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
Floer homology for immersed Lagrangian submanifolds
浸入式拉格朗日子流形的 Florer 同调
- 批准号:
EP/D07763X/1 - 财政年份:2006
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
Generalized Donaldson-Thomas invariants
广义唐纳森-托马斯不变量
- 批准号:
EP/D077990/1 - 财政年份:2006
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
相似国自然基金
铜募集微纳米网片上调LOX活性稳定胶原网络促进盆底修复的研究
- 批准号:82371638
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
随机激励下多稳态系统的临界过渡识别及Basin Stability分析
- 批准号:11872305
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
PPFS调节多倍体水稻花粉育性的功能研究
- 批准号:31140033
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
关于铁磁链方程组的解的部分正则性的研究
- 批准号:10926050
- 批准年份:2009
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
计算电磁学高稳定度辛算法研究
- 批准号:60931002
- 批准年份:2009
- 资助金额:200.0 万元
- 项目类别:重点项目
拉压应力状态下含充填断续节理岩体三维裂隙扩展及锚杆加固机理研究
- 批准号:40872203
- 批准年份:2008
- 资助金额:45.0 万元
- 项目类别:面上项目
铝合金中新型耐热合金相的应用基础研究
- 批准号:50801067
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于系统轨迹灵敏度的电力市场下最佳安全运行算法研究
- 批准号:50377028
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 66.58万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 66.58万 - 项目类别:
Standard Grant
The Mechanism and Stability of Global Imbalances
全球失衡的机制与稳定性
- 批准号:
23K22120 - 财政年份:2024
- 资助金额:
$ 66.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
- 批准号:
2234522 - 财政年份:2024
- 资助金额:
$ 66.58万 - 项目类别:
Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
- 批准号:
2234523 - 财政年份:2024
- 资助金额:
$ 66.58万 - 项目类别:
Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
- 批准号:
2234524 - 财政年份:2024
- 资助金额:
$ 66.58万 - 项目类别:
Standard Grant
Trait-shift induced interaction modification: How individual variation affects ecosystem stability
性状转变引起的相互作用修改:个体变异如何影响生态系统稳定性
- 批准号:
2330970 - 财政年份:2024
- 资助金额:
$ 66.58万 - 项目类别:
Standard Grant
CAREER: Interpolation, stability, and rationality
职业:插值、稳定、合理
- 批准号:
2338345 - 财政年份:2024
- 资助金额:
$ 66.58万 - 项目类别:
Continuing Grant
Investigating the stability of the inverse Brascamp-Lieb inequality
研究反 Brascamp-Lieb 不等式的稳定性
- 批准号:
23K25777 - 财政年份:2024
- 资助金额:
$ 66.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Understanding the mechanisms of microbial community assembly, stability and function
了解微生物群落组装、稳定性和功能的机制
- 批准号:
NE/Y001249/1 - 财政年份:2024
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant














{{item.name}}会员




