Bridgeland stability on Fukaya categories of Calabi-Yau 2-folds
Calabi-Yau 2 倍 Fukaya 类别上的 Bridgeland 稳定性
基本信息
- 批准号:EP/T012749/1
- 负责人:
- 金额:$ 66.58万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two key ideas in mathematics are symmetry and classification. Symmetry is ubiquitous in mathematics, and is the source of endless fascination and study. Many symmetries are well-known, for example the symmetries of a cube or sphere, but others are far more mysterious and their study has led to great mathematical advances. Mirror symmetry of Calabi-Yau manifolds has excited much research in mathematics (for example, in Algebraic Geometry and Symplectic Topology), and also in theoretical physics through String Theory, but in general remains poorly understood. Mirror symmetry involves relating the geometry of two Calabi-Yau manifolds: one aspect of the symmetry is called the "A-model" and the other is the "B-model". Whilst there have been advances in understanding the B-model, we seem to currently lack the tools to adequately tackle the A-model. Our research proposal aims to give a complete understanding of the A-model for Calabi-Yau 2-folds, which would be a major achievement.Classification results enable us to describe a large family of mathematical objects that are typically hard to understand in a simpler manner. A typical strategy for classification results in geometry, going back at least to Riemann's Uniformisation Theorem, is to find a special representative for a given class of geometric objects. The challenge then is to determine whether such a special representative exists and, when it does, whether it is unique. In our setting, the special representatives are called special Lagrangians and their uniqueness is known, but the problem of finding them in a given class has proven to be very difficult, despite many attempts to solve it. Our proposal aims to solve this problem for special Lagrangians completely in the setting of Calabi-Yau 2-folds.The proposed research will combine techniques from distinct areas of mathematics (Symplectic Topology and Geometric Analysis), and it is often the case that some of the most exciting breakthroughs in mathematics occur when different areas are brought together. The connections to further areas of mathematics and theoretical physics mean that the impact of the proposed research is likely to be far-reaching and inspire many new research directions which will have a profound effect on the field.
数学的两个关键思想是对称性和分类。对称性在数学上无处不在,并且是无休止的迷恋和研究的根源。许多对称性是众所周知的,例如立方体或球体的对称性,但其他对称性则更加神秘,他们的研究导致了巨大的数学进步。卡拉比远流形的镜像对称性激发了许多在数学方面的研究(例如,在代数几何和象征性拓扑结构中),以及通过弦乐理论中的理论物理学研究,但一般而言仍然知之甚少。镜像对称性涉及关联两个卡拉比(Calabi-Yau)歧管的几何形状:对称的一个方面称为“ A模型”,另一个是“ B-模型”。尽管在理解B模型方面取得了进步,但我们目前似乎缺乏足够的工具来适应A模型。我们的研究建议旨在使Calabi-Yau的A模型完全了解2倍,这将是一个主要的成就。分类结果使我们能够描述一个通常很难以更简单方式理解的大型数学对象。分类的典型策略导致几何形状至少可以追溯到里曼的统一定理,是为给定类别的几何对象找到一个特殊的代表。那时的挑战是确定这种特殊的代表是否存在,并且当它确实存在时,它是否是唯一的。在我们的环境中,特别代表被称为特殊的Lagrangians,他们的独特性是已知的,但是在给定班级中找到它们的问题已被证明是非常困难的,尽管许多尝试解决了它。我们的建议旨在在2倍的Calabi-yau的环境中完全解决特殊拉格朗日人的问题。拟议的研究将结合来自不同数学领域(符号拓扑和几何分析)的技术,通常在不同领域中发生一些最令人兴奋的数学突破的情况是,这种情况通常是如此。与数学和理论物理学的进一步领域的联系意味着,拟议的研究的影响可能是深远的,并激发了许多新的研究方向,这将对该领域产生深远的影响。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Symplectic $\mathbb{C}^*$-manifolds II: Morse-Bott-Floer Spectral Sequences
辛 $mathbb{C}^*$-流形 II:Morse-Bott-Floer 谱序列
- DOI:10.48550/arxiv.2304.14384
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ritter Alexander F.
- 通讯作者:Ritter Alexander F.
Ancient solutions in Lagrangian mean curvature flow
拉格朗日平均曲率流的古代解
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Lambert Ben
- 通讯作者:Lambert Ben
Neck pinches along the Lagrangian mean curvature flow of surfaces
沿表面拉格朗日平均曲率流的颈缩
- DOI:10.48550/arxiv.2208.11054
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Lotay Jason D.
- 通讯作者:Lotay Jason D.
The correspondence induced on the pillowcase by the earring tangle
耳环缠结在枕套上引起的对应
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Cazassus, G
- 通讯作者:Cazassus, G
Equivariant Lagrangian Floer homology via cotangent bundles of $EG_N$
通过 $EG_N$ 的余切丛的等变拉格朗日弗洛尔同调
- DOI:10.48550/arxiv.2202.10097
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Cazassus Guillem
- 通讯作者:Cazassus Guillem
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dominic Joyce其他文献
Dominic Joyce的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dominic Joyce', 18)}}的其他基金
Cohomological Hall Algebras of Calabi-Yau 3-folds
Calabi-Yau 3 次上同调霍尔代数
- 批准号:
EP/X040674/1 - 财政年份:2023
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
String Topology, J-holomorphic Curves, and Symplectic Geometry
弦拓扑、J 全纯曲线和辛几何
- 批准号:
EP/J016950/1 - 财政年份:2012
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
Motivic invariants and categorification
动机不变量和分类
- 批准号:
EP/I033343/1 - 财政年份:2011
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
Lagrangian Floer cohomology and Khovanov homology
拉格朗日弗洛尔上同调和科万诺夫同调
- 批准号:
EP/H035303/1 - 财政年份:2010
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
Ringel-Hall algebras of Calabi-Yau 3-folds and Donaldson-Thomas theory
Calabi-Yau 3 重的 Ringel-Hall 代数和 Donaldson-Thomas 理论
- 批准号:
EP/G068798/1 - 财政年份:2009
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
Stability conditions on derived categories
派生类别的稳定性条件
- 批准号:
EP/F038461/1 - 财政年份:2008
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
Homological Mirror Symmetry for toric stacks
复曲面堆叠的同调镜像对称
- 批准号:
EP/F055366/1 - 财政年份:2008
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
Floer homology for immersed Lagrangian submanifolds
浸入式拉格朗日子流形的 Florer 同调
- 批准号:
EP/D07763X/1 - 财政年份:2006
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
Generalized Donaldson-Thomas invariants
广义唐纳森-托马斯不变量
- 批准号:
EP/D077990/1 - 财政年份:2006
- 资助金额:
$ 66.58万 - 项目类别:
Research Grant
相似国自然基金
面向安全稳定生产的风电智能预测预警机制研究
- 批准号:62366039
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
神经干细胞外泌体传递YBX1调控ANXA2稳定性缓解脑缺血再灌注损伤机制研究
- 批准号:82360386
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
BCLAF1通过YTHDF2调控RNA稳定性促进食管鳞癌代谢重编程的机制研究
- 批准号:82372680
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
稳定共轭二并与三并莫比乌斯结构的精准构筑与性质研究
- 批准号:22371243
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
利用油菜-菘蓝附加系解析板蓝根药用活性成分及遗传稳定的抗病毒油菜创制
- 批准号:32372088
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 66.58万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 66.58万 - 项目类别:
Standard Grant
The Mechanism and Stability of Global Imbalances
全球失衡的机制与稳定性
- 批准号:
23K22120 - 财政年份:2024
- 资助金额:
$ 66.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigating the stability of the inverse Brascamp-Lieb inequality
研究反 Brascamp-Lieb 不等式的稳定性
- 批准号:
23K25777 - 财政年份:2024
- 资助金额:
$ 66.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Trait-shift induced interaction modification: How individual variation affects ecosystem stability
性状转变引起的相互作用修改:个体变异如何影响生态系统稳定性
- 批准号:
2330970 - 财政年份:2024
- 资助金额:
$ 66.58万 - 项目类别:
Standard Grant