Generalized Donaldson-Thomas invariants
广义唐纳森-托马斯不变量
基本信息
- 批准号:EP/D077990/1
- 负责人:
- 金额:$ 40.83万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Calabi-Yau 3-folds are a special kind of 6-dimensional curved space, with a lot of geometrical structure. They are of great interest to mathematicians working in Algebraic and Differential Geometry, and to physicists working in String Theory. The greatest problem in fundamental physics is to find a single theory which successfully combines Einstein's General Relativity -- the physics of very large things, such as galaxies -- and Quantum Theory -- the physics of very small things, such as atoms. String Theory is the leading candidate for doing this. It predicts that the dimension of space-time is not 4 (3 space plus one time), but 10. The extra 6 dimensions are rolled up in a Calabi-Yau 3-fold, with very small radius. So according to String Theory, Calabi-Yau 3-folds describe the vacuum of space itself. Using physical reasoning, String Theorists made extraordinary mathematical predictions about Calabi-Yau 3-folds, known as Mirror Symmetry , which have been verified in many cases, and cause much excitement among mathematicians. Donaldson-Thomas invariants are systems of numbers associated to a Calabi-Yau 3-fold M which count some mathematical objects ( semistable coherent sheaves ) which live on M. The definition is complicated. They are mathematically interesting because they are unchanged under continuous deformations of M, and encode mysterious, nontrivial information about M. They are physically interesting as they count physically important objects (branes, BPS states). It is at present only known how to define Donaldson-Thomas invariants in a special case (when semistable and stable coincide). We propose to find out how to extend the definition to the general case. We also aim to find the transformation laws for these extended invariants under change of stability condition (this is not known even for the old invariants), and to compute them in examples. We hope this will lead to a better understanding of the space of stability conditions, which is part of the space of String Theory vacua, a very important but poorly understood space.
Calabi-Yau三褶是一种特殊的六维弯曲空间,具有大量的几何结构。它们对研究代数和微分几何的数学家以及研究弦理论的物理学家都很有兴趣。基础物理学的最大问题是找到一种理论,它能成功地把爱因斯坦的广义相对论和量子论结合起来。广义相对论是关于非常大的物体,如星系的物理学,量子理论是关于非常小的物体,如原子的物理学。弦理论是解决这个问题的主要候选理论。它预言时空的维度不是4(3个空间加1个时间),而是10。额外的6个维度卷成一个卡拉比-丘3折叠,半径非常小。所以根据弦理论,卡拉比-丘三折描述了空间本身的真空。利用物理推理,弦理论家对卡拉比-丘三折做出了非凡的数学预测,被称为镜像对称,这些预测在许多情况下得到了验证,并在数学家中引起了极大的兴奋。Donaldson-Thomas不变量是与Calabi-Yau 3-fold M相关的数系统,它计算M上存在的一些数学对象(半稳定相干束)。它们在数学上是有趣的,因为它们在M的连续变形下是不变的,并且编码关于M的神秘的、不平凡的信息。它们在物理上是有趣的,因为它们计算物理上重要的对象(膜、BPS状态)。目前只知道在一种特殊情况下(当半稳定和稳定重合时)如何定义Donaldson-Thomas不变量。我们打算找出如何把这个定义推广到一般情况。我们还旨在找出这些扩展不变量在稳定性变化条件下的变换规律(即使是旧不变量也不知道),并通过实例计算它们。我们希望这将导致对稳定条件空间的更好理解,这是弦理论真空空间的一部分,一个非常重要但却知之甚少的空间。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized Donaldson–Thomas Invariants
广义唐纳森-托马斯不变量
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Yukinobu Toda
- 通讯作者:Yukinobu Toda
Donaldson-Thomas theory and cluster algebras
唐纳森-托马斯理论和簇代数
- DOI:10.1215/00127094-2142753
- 发表时间:2013
- 期刊:
- 影响因子:2.5
- 作者:Nagao K
- 通讯作者:Nagao K
On higher rank Donaldson-Thomas invariants
关于更高阶的唐纳森-托马斯不变量
- DOI:10.48550/arxiv.1002.3608
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Nagao Kentaro
- 通讯作者:Nagao Kentaro
Fixed point loci of moduli spaces of sheaves on toric varieties
复曲面品种滑轮模空间的不动点轨迹
- DOI:10.48550/arxiv.0810.0418
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Kool M
- 通讯作者:Kool M
Euler characteristics of moduli spaces of torsion free sheaves on toric surfaces
复曲面无扭滑轮模空间的欧拉特性
- DOI:10.1007/s10711-014-9966-2
- 发表时间:2014
- 期刊:
- 影响因子:0.5
- 作者:Kool M
- 通讯作者:Kool M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dominic Joyce其他文献
Dominic Joyce的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dominic Joyce', 18)}}的其他基金
Cohomological Hall Algebras of Calabi-Yau 3-folds
Calabi-Yau 3 次上同调霍尔代数
- 批准号:
EP/X040674/1 - 财政年份:2023
- 资助金额:
$ 40.83万 - 项目类别:
Research Grant
Bridgeland stability on Fukaya categories of Calabi-Yau 2-folds
Calabi-Yau 2 倍 Fukaya 类别上的 Bridgeland 稳定性
- 批准号:
EP/T012749/1 - 财政年份:2020
- 资助金额:
$ 40.83万 - 项目类别:
Research Grant
String Topology, J-holomorphic Curves, and Symplectic Geometry
弦拓扑、J 全纯曲线和辛几何
- 批准号:
EP/J016950/1 - 财政年份:2012
- 资助金额:
$ 40.83万 - 项目类别:
Research Grant
Motivic invariants and categorification
动机不变量和分类
- 批准号:
EP/I033343/1 - 财政年份:2011
- 资助金额:
$ 40.83万 - 项目类别:
Research Grant
Lagrangian Floer cohomology and Khovanov homology
拉格朗日弗洛尔上同调和科万诺夫同调
- 批准号:
EP/H035303/1 - 财政年份:2010
- 资助金额:
$ 40.83万 - 项目类别:
Research Grant
Ringel-Hall algebras of Calabi-Yau 3-folds and Donaldson-Thomas theory
Calabi-Yau 3 重的 Ringel-Hall 代数和 Donaldson-Thomas 理论
- 批准号:
EP/G068798/1 - 财政年份:2009
- 资助金额:
$ 40.83万 - 项目类别:
Research Grant
Stability conditions on derived categories
派生类别的稳定性条件
- 批准号:
EP/F038461/1 - 财政年份:2008
- 资助金额:
$ 40.83万 - 项目类别:
Research Grant
Homological Mirror Symmetry for toric stacks
复曲面堆叠的同调镜像对称
- 批准号:
EP/F055366/1 - 财政年份:2008
- 资助金额:
$ 40.83万 - 项目类别:
Research Grant
Floer homology for immersed Lagrangian submanifolds
浸入式拉格朗日子流形的 Florer 同调
- 批准号:
EP/D07763X/1 - 财政年份:2006
- 资助金额:
$ 40.83万 - 项目类别:
Research Grant
相似国自然基金
曲线计数理论中的Donaldson-Thomas不变量和相对Gromov-Witten不变量
- 批准号:11801185
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Cluster代数、量子群及其在Donaldson-Thomas不变量中的应用
- 批准号:11571119
- 批准年份:2015
- 资助金额:50.0 万元
- 项目类别:面上项目
凯勒几何中的广义Yau-Tian-Donaldson猜想
- 批准号:11571018
- 批准年份:2015
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
圏論的Donaldson-Thomas理論の開拓と周辺領域の相互発展
范畴论的发展唐纳森-托马斯理论与周边地区的共同发展
- 批准号:
24H00180 - 财政年份:2024
- 资助金额:
$ 40.83万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Foundation of non-linear Donaldson-Thomas theory
非线性唐纳森-托马斯理论的基础
- 批准号:
23K19007 - 财政年份:2023
- 资助金额:
$ 40.83万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Categorification of cohomological Donaldson--Thomas invariants
上同调唐纳森--托马斯不变量的分类
- 批准号:
22KJ0616 - 财政年份:2023
- 资助金额:
$ 40.83万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Geometry from Donaldson-Thomas invariants
唐纳森-托马斯不变量的几何
- 批准号:
EP/V010719/1 - 财政年份:2022
- 资助金额:
$ 40.83万 - 项目类别:
Research Grant
Donaldson-Thomas theory and tropical geometry
唐纳森-托马斯理论和热带几何
- 批准号:
2434344 - 财政年份:2020
- 资助金额:
$ 40.83万 - 项目类别:
Studentship
Logarithmic Donaldson-Thomas Theory
对数唐纳森-托马斯理论
- 批准号:
1903437 - 财政年份:2019
- 资助金额:
$ 40.83万 - 项目类别:
Continuing Grant
Localization formulae in Donaldson-Thomas theory of Calabi-Yau 4-folds
Calabi-Yau 4 倍 Donaldson-Thomas 理论中的定域公式
- 批准号:
19K23397 - 财政年份:2019
- 资助金额:
$ 40.83万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
D-臨界的双有理幾何学の確立とDonaldson-Thomas不変量の圏論化
D临界双有理几何和Donaldson-Thomas不变量范畴论的建立
- 批准号:
19H01779 - 财政年份:2019
- 资助金额:
$ 40.83万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Donaldson-Thomas type invariants for Calabi-Yau 4-folds
Calabi-Yau 4 倍的 Donaldson-Thomas 型不变量
- 批准号:
17K14157 - 财政年份:2017
- 资助金额:
$ 40.83万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
New Directions in Gromov-Witten and Donaldson-Thomas theory
格罗莫夫-维滕和唐纳森-托马斯理论的新方向
- 批准号:
172668-2012 - 财政年份:2016
- 资助金额:
$ 40.83万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




