Floer homology for immersed Lagrangian submanifolds

浸入式拉格朗日子流形的 Florer 同调

基本信息

  • 批准号:
    EP/D07763X/1
  • 负责人:
  • 金额:
    $ 6.69万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

Most of modern geometry studies some kind of space. The spaces considered in differential geometry are called manifolds , spaces which locally look like n-dimensional Euclidean space but globally have an interesting shape. A manifold is compact if it is closed up, with no edges. The surface of a doughnut is a compact 2-dimensional manifold. A submanifold N of a manifold M is a subset of M which is itself a manifold, usually of smaller dimension than M. There are two kinds: embedded submanifolds, which may not intersect (cross) themselves, and immersed submanifolds, which may. One usually considers manifolds with some extra geometric structure, such as a Riemannian metric , which tells you the lengths of paths in the manifold, or a symplectic structure , which tells you the areas of 2-dimensional submanifolds of the manifold. Symplectic manifolds are the foundation of the mathematical formulation of mechanics, and so of much of classical physics. They are also very interesting in their own right. Mathematicians like them because they are one of very few structures with an infinite-dimensional amount of local symmetry, which gives symplectic geometry an unusual, entirely global flavour. Lagrangian submanifolds are a special kind of submanifold of a symplectic manifold. Given two compact, embedded Lagrangian submanifolds N, N* of a symplectic manifold M, one can under certain conditions define the Floer homology groups HF(N,N*), which are roughly speaking finite-dimensional vector spaces. The definition is very difficult. To do it, one chooses an auxiliary complex structure J on M and counts J-holomorphic 2-dimensional discs D in M with boundary (edge) in the union of N and N*. The remarkable thing about HF(N,N*) is that it is independent of the choice of J, and is also unchanged by moving N and N* around amongst Lagrangian submanifolds. It encodes some mysterious, nontrivial information about Lagrangian submanifolds one cannot get at in any other known way. It is a powerful tool in symplectic geometry. The main aim of the research is to extend the definition of Floer homology groups HF(N,N*) to immersed Lagrangian submanifolds N, N*, and to understand the conditions under which they can be defined ( obstructions to their definition). The new technical problems this involves have to do with J-holomorphic discs D whose boundary passes through self-intersection points in N or N*, and what is the right algebraic set-up for including and counting these to get well-behaved groups HF(N,N*). We also want to understand the allowed motions of N and N* amongst immersed Lagrangian submanifolds which do not change HF(N,N*). As well as being interesting to symplectic geometers, we believe these results will have important applications to several major conjectures about special Lagrangian geometry and Calabi-Yau manifolds, which are of interest to physicists working in String Theory. The point is that these conjectures can only be true if one works in the right class of Lagrangians, and embedded nonsingular Lagrangians are not a large enough class. There is good evidence that the right class to consider may be immersed Lagrangians whose Floer homology is unobstructed, but to understand what this means we first need a theory of Floer homology for immersed Lagrangians, which we hope to develop.
大多数现代几何学研究某种空间。微分几何中考虑的空间称为流形,这些空间局部看起来像n维欧几里得空间,但整体上具有有趣的形状。一个流形是紧致的,如果它是封闭的,没有边。甜甜圈的表面是一个紧凑的二维流形。一个流形M的一个子流形N是M的一个子集,它本身也是一个流形,通常维数比M小。有两种类型:嵌入子流形,可能不相交(交叉)自己,浸入子流形,可能。人们通常考虑具有一些额外几何结构的流形,例如黎曼度量,它告诉你流形中路径的长度,或者辛结构,它告诉你流形的二维子流形的面积。辛流形是力学数学公式的基础,也是许多经典物理学的基础。它们本身也很有趣。数学家们喜欢它们,因为它们是极少数具有无限维局部对称性的结构之一,这给辛几何带来了一种不寻常的、完全全局的味道。拉格朗日子流形是辛流形的一种特殊子流形。给定辛流形M的两个紧致嵌入拉格朗日子流形N,N*,在一定条件下可以定义Floer同调群HF(N,N*),它们大致上是有限维向量空间。这个定义很难。为了做到这一点,我们在M上选择一个辅助复结构J,并计数M中的J-全纯二维圆盘D,其边界(边)在N和N* 的并中。HF(N,N*)的显著之处在于它与J的选择无关,并且在拉格朗日子流形之间移动N和N* 也不会改变。它编码了一些关于拉格朗日子流形的神秘的、非平凡的信息,人们无法以任何其他已知的方式获得这些信息。它是辛几何中的一个强有力的工具。研究的主要目的是将Floer同调群HF(N,N*)的定义扩展到浸入拉格朗日子流形N,N*,并了解它们可以被定义的条件(它们定义的障碍)。这涉及到的新技术问题与J-全纯圆D有关,其边界通过N或N* 中的自交点,以及包含和计数这些点以得到行为良好的群HF(N,N*)的正确代数设置是什么。我们还想了解N和N* 在不改变HF(N,N*)的浸入拉格朗日子流形之间的允许运动。以及有趣的辛几何学家,我们相信这些结果将有重要的应用,几个主要的approachures关于特殊的拉格朗日几何和Calabi-Yau流形,这是有兴趣的物理学家工作在弦理论。关键是,只有在正确的拉格朗日类中工作时,这些假设才能为真,而嵌入的非奇异拉格朗日不是一个足够大的类。有很好的证据表明,正确的类考虑可能是沉浸拉格朗日的弗洛尔同调是通畅的,但要理解这意味着什么,我们首先需要一个理论的弗洛尔同调沉浸拉格朗日,我们希望发展。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Immersed Lagrangian Floer theory
沉浸式拉格朗日弗洛尔理论
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Vanualailai;B. Sharma;S. Nakagiri;K. Kuwae;赤穂まなぶ
  • 通讯作者:
    赤穂まなぶ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dominic Joyce其他文献

Dominic Joyce的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dominic Joyce', 18)}}的其他基金

Cohomological Hall Algebras of Calabi-Yau 3-folds
Calabi-Yau 3 次上同调霍尔代数
  • 批准号:
    EP/X040674/1
  • 财政年份:
    2023
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Research Grant
Bridgeland stability on Fukaya categories of Calabi-Yau 2-folds
Calabi-Yau 2 倍 Fukaya 类别上的 Bridgeland 稳定性
  • 批准号:
    EP/T012749/1
  • 财政年份:
    2020
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Research Grant
String Topology, J-holomorphic Curves, and Symplectic Geometry
弦拓扑、J 全纯曲线和辛几何
  • 批准号:
    EP/J016950/1
  • 财政年份:
    2012
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Research Grant
Motivic invariants and categorification
动机不变量和分类
  • 批准号:
    EP/I033343/1
  • 财政年份:
    2011
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Research Grant
Lagrangian Floer cohomology and Khovanov homology
拉格朗日弗洛尔上同调和科万诺夫同调
  • 批准号:
    EP/H035303/1
  • 财政年份:
    2010
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Research Grant
Ringel-Hall algebras of Calabi-Yau 3-folds and Donaldson-Thomas theory
Calabi-Yau 3 重的 Ringel-Hall 代数和 Donaldson-Thomas 理论
  • 批准号:
    EP/G068798/1
  • 财政年份:
    2009
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Research Grant
Stability conditions on derived categories
派生类别的稳定性条件
  • 批准号:
    EP/F038461/1
  • 财政年份:
    2008
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Research Grant
Homological Mirror Symmetry for toric stacks
复曲面堆叠的同调镜像对称
  • 批准号:
    EP/F055366/1
  • 财政年份:
    2008
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Research Grant
Generalized Donaldson-Thomas invariants
广义唐纳森-托马斯不变量
  • 批准号:
    EP/D077990/1
  • 财政年份:
    2006
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Research Grant

相似国自然基金

Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
  • 批准号:
    10751480
  • 财政年份:
    2024
  • 资助金额:
    $ 6.69万
  • 项目类别:
Study on Contact Homology by String Topology
弦拓扑接触同调研究
  • 批准号:
    23KJ1238
  • 财政年份:
    2023
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
  • 批准号:
    10636329
  • 财政年份:
    2023
  • 资助金额:
    $ 6.69万
  • 项目类别:
Targeting NuoD for the treatment of H. pylori
靶向 NuoD 治疗幽门螺杆菌
  • 批准号:
    10659783
  • 财政年份:
    2023
  • 资助金额:
    $ 6.69万
  • 项目类别:
Identifying Genetic Contributions to Adverse Drug Reactions
确定遗传因素对药物不良反应的影响
  • 批准号:
    10730434
  • 财政年份:
    2023
  • 资助金额:
    $ 6.69万
  • 项目类别:
Characterization of disulfide modified diabetogenic neoepitopes
二硫键修饰的糖尿病新表位的表征
  • 批准号:
    10720644
  • 财政年份:
    2023
  • 资助金额:
    $ 6.69万
  • 项目类别:
Role and Theranostics Potential of Enolase in Prostate Cancer Health Disparities
烯醇化酶在前列腺癌健康差异中的作用和治疗潜力
  • 批准号:
    10649164
  • 财政年份:
    2023
  • 资助金额:
    $ 6.69万
  • 项目类别:
Natural products inhibitors targeting homology-directed DNA repair for cancer therapy
针对癌症治疗的同源定向 DNA 修复的天然产物抑制剂
  • 批准号:
    10651048
  • 财政年份:
    2023
  • 资助金额:
    $ 6.69万
  • 项目类别:
Targeting SHP-1 through a newfound metabolite-regulated cysteine activation site
通过新发现的代谢物调节的半胱氨酸激活位点靶向 SHP-1
  • 批准号:
    10802649
  • 财政年份:
    2023
  • 资助金额:
    $ 6.69万
  • 项目类别:
Molecular mechanism of membrane association of Bruton's Tyrosine Kinase
布鲁顿酪氨酸激酶膜缔合的分子机制
  • 批准号:
    10604872
  • 财政年份:
    2023
  • 资助金额:
    $ 6.69万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了