Controlling Acoustic Metamaterials with Magnetic Resonances: The Best of Both Worlds
用磁共振控制声学超材料:两全其美
基本信息
- 批准号:EP/T016574/1
- 负责人:
- 金额:$ 97.07万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The world around us is full of devices, ranging from smartphones to airplanes. Moreover, our civilization is defined to a great degree by the functionalities that those devices can deliver. However, when constructing and indeed even conceiving a device, engineers operate within constraints set by properties of materials available, either in nature or via industrial processes. These material properties together with the laws of physics then restrict functionalities that the device may have. Radically new dynamical properties and advanced functionalities can be created by tailor-tuning the spectra of wave excitations in structured media - so-called metamaterials. Recently demonstrated and proposed practical applications of such artificial materials include e.g. optical fibres (manipulating light), lasers (manipulating electrons), and noise absorption and heat steering (manipulating acoustic waves). The properties of 'surface acoustic waves' (SAWs) have been investigated for over one hundred years, but it was the invention of electro-acoustic "interdigital" transducers in 1965 that enabled surface acoustic wave devices to be developed for a wide and diverse range of functions, including analogue signal processing in mobile phones and sensing. Recently, the field of metamaterials research has expanded to acoustic waves, promising a method to control and manipulate propagation of surface acoustic waves. These so called acoustic (or phononic) metamaterials could both extend the functionality of existing devices and underpin totally new device concepts. However, to date there have been very few suggested ways of designing acoustic metamaterials that can be dynamically reconfigured and tuned, limiting their use in applications. Integration with magnetic materials, well known for their ability to store information e.g. in magnetic hard disk drives, offers an exciting route for achieving non-volatile tuning of acoustic metamaterials. Our project aims to develop a new class of magneto-acoustic metamaterials in which the role of their building blocks ("meta-atoms") is played by magneto-acoustic resonators. Such metamaterials will add exquisite magnetic field tunability to structures aimed to control the propagation of surface acoustic waves, opening intriguing opportunities both in fundamental science and technology. Technologically, the memory phenomenon inherent to magnetism will enable significant energy savings in non-volatile magneto-acoustic data and signal processing devices. For instance, they would be instantly bootable and could be more easily integrated with the existing magnetic data storage devices. From the point of view of fundamental science, the magneto-acoustic metamaterials developed in our project will serve as an excellent test bed for studying the physics of wave propagation in non-uniform and non-stationary media. The collaborative research programme will be conducted jointly by the Department of Materials Science and Engineering at the University of Sheffield and the College of Engineering, Mathematics and Physical Sciences at the University of Exeter. The Sheffield team will contribute to the project their internationally leading expertise in magnetostrictive and multiferroic materials and nanotechnology, while the Exeter team will contribute their world leading expertise in dynamical characterization and theoretical modelling of acoustic and magnetic metamaterials and devices. By joining their forces together, the two teams will ensure that UK will remain at the forefront of the acoustics and magnetism research and technology, in particular opening the new interdisciplinary field of magneto-acoustic metamaterials.
我们周围的世界充满了设备,从智能手机到飞机。此外,我们的文明在很大程度上是由这些设备所能提供的功能来定义的。然而,在构建甚至构思设备时,工程师在自然界或工业过程中可用材料的属性所设定的约束条件内操作。这些材料特性与物理定律一起限制了设备可能具有的功能。通过调整结构化介质(即所谓的超材料)中波激发的光谱,可以创造出全新的动力学特性和先进的功能。这种人造材料最近被证明和提出的实际应用包括例如光纤(操纵光)、激光(操纵电子)以及噪声吸收和热转向(操纵声波)。声表面波(SAW)的特性已经被研究了一百多年,但是直到1965年电声“叉指式”换能器的发明,才使得声表面波器件能够被开发用于广泛和多样化的功能,包括移动的电话和传感中的模拟信号处理。近年来,超材料的研究领域已经扩展到声波,有望成为控制和操纵表面声波传播的方法。这些所谓的声学(或声子)超材料既可以扩展现有设备的功能,也可以支持全新的设备概念。然而,到目前为止,很少有人提出设计可以动态重新配置和调整的声学超材料的方法,限制了它们在应用中的使用。与磁性材料的集成,以其存储信息的能力而闻名,例如在磁性硬盘驱动器中,为实现声学超材料的非易失性调谐提供了一条令人兴奋的途径。我们的项目旨在开发一类新的磁声超材料,其中它们的构建块(“元原子”)的作用是由磁声谐振器。这种超材料将为旨在控制表面声波传播的结构增加精致的磁场可调谐性,为基础科学和技术提供有趣的机会。从技术上讲,磁性固有的记忆现象将使非易失性磁声数据和信号处理设备能够显著节省能源。例如,它们可以立即启动,并且可以更容易地与现有的磁性数据存储设备集成。从基础科学的角度来看,本项目开发的磁声超材料将成为研究非均匀和非平稳介质中波传播物理的良好实验平台。该合作研究计划将由谢菲尔德大学材料科学与工程系和埃克塞特大学工程、数学和物理科学学院联合开展。谢菲尔德团队将为该项目贡献他们在磁致伸缩和多铁性材料和纳米技术方面的国际领先专业知识,而埃克塞特团队将贡献他们在声学和磁性超材料和设备的动态特性和理论建模方面的世界领先专业知识。通过联合他们的力量,这两个团队将确保英国将继续处于声学和磁学研究和技术的前沿,特别是打开新的跨学科领域的磁声超材料。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Erratum: "Controlling acoustic waves using magnetoelastic Fano resonances" [Appl. Phys. Lett. 115 , 082403 (2019)]
勘误:“使用磁弹性法诺共振控制声波”[Appl。
- DOI:10.1063/5.0012734
- 发表时间:2020
- 期刊:
- 影响因子:4
- 作者:Latcham O
- 通讯作者:Latcham O
Nonlinear chiral magnonic resonators: Toward magnonic neurons
- DOI:10.1063/5.0149466
- 发表时间:2023-04
- 期刊:
- 影响因子:4
- 作者:K. Fripp;Y. Au;A. Shytov;V. Kruglyak
- 通讯作者:K. Fripp;Y. Au;A. Shytov;V. Kruglyak
Spin-wave control using dark modes in chiral magnonic resonators
- DOI:10.1103/physrevb.104.054437
- 发表时间:2021-08-26
- 期刊:
- 影响因子:3.7
- 作者:Fripp, K. G.;Shytov, A. V.;Kruglyak, V. V.
- 通讯作者:Kruglyak, V. V.
Ultrafast time-evolution of chiral Néel magnetic domain walls probed by circular dichroism in x-ray resonant magnetic scattering.
- DOI:10.1038/s41467-022-28899-0
- 发表时间:2022-03-17
- 期刊:
- 影响因子:16.6
- 作者:Léveillé C;Burgos-Parra E;Sassi Y;Ajejas F;Chardonnet V;Pedersoli E;Capotondi F;De Ninno G;Maccherozzi F;Dhesi S;Burn DM;van der Laan G;Latcham OS;Shytov AV;Kruglyak VV;Jal E;Cros V;Chauleau JY;Reyren N;Viret M;Jaouen N
- 通讯作者:Jaouen N
Hybrid magnetoacoustic metamaterials for ultrasound control
- DOI:10.1063/5.0018801
- 发表时间:2019-11
- 期刊:
- 影响因子:4
- 作者:O. S. Latcham;Y. Gusieva;A. Shytov;O. Gorobets;V. Kruglyak
- 通讯作者:O. S. Latcham;Y. Gusieva;A. Shytov;O. Gorobets;V. Kruglyak
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Volodymyr Kruglyak其他文献
Volodymyr Kruglyak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Volodymyr Kruglyak', 18)}}的其他基金
Coherent spin waves for emerging nanoscale magnonic logic architectures
用于新兴纳米级磁波逻辑架构的相干自旋波
- 批准号:
EP/L019876/1 - 财政年份:2014
- 资助金额:
$ 97.07万 - 项目类别:
Research Grant
SUB-PICOSECOND CONTROL OF NANO-MAGNETS
纳米磁体的亚皮秒控制
- 批准号:
EP/E055087/1 - 财政年份:2008
- 资助金额:
$ 97.07万 - 项目类别:
Fellowship
相似国自然基金
对由不同共振单元或含人工结构固体板构建的声学超表面(acoustic metasurface)的研究
- 批准号:11604307
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Acoustic Cardiography在心力衰竭患者危险分层及预后评估中的应用研究
- 批准号:81300244
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
- 批准号:
2423820 - 财政年份:2024
- 资助金额:
$ 97.07万 - 项目类别:
Standard Grant
CAREER: Non-Local Metamaterials and Metasurfaces for Next Generation Non-Reciprocal Acoustic Devices
职业:下一代非互易声学器件的非局域超材料和超表面
- 批准号:
2340782 - 财政年份:2024
- 资助金额:
$ 97.07万 - 项目类别:
Standard Grant
MetacMed: Acoustic and mechanical metamaterials for biomedical and energy harvesting applications
MetacMed:用于生物医学和能量收集应用的声学和机械超材料
- 批准号:
EP/Y034635/1 - 财政年份:2024
- 资助金额:
$ 97.07万 - 项目类别:
Research Grant
MetacMed: Acoustic and mechanical metamaterials for biomedical and energy harvesting applications
MetacMed:用于生物医学和能量收集应用的声学和机械超材料
- 批准号:
EP/Y036204/1 - 财政年份:2024
- 资助金额:
$ 97.07万 - 项目类别:
Research Grant
Development of soundproofing materials for automobiles using cellulose nanofibers and acoustic metamaterials
使用纤维素纳米纤维和声学超材料开发汽车隔音材料
- 批准号:
21K03953 - 财政年份:2021
- 资助金额:
$ 97.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Acoustic metamaterials applied to biomedical ultrasound
声学超材料应用于生物医学超声
- 批准号:
2603223 - 财政年份:2021
- 资助金额:
$ 97.07万 - 项目类别:
Studentship
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
- 批准号:
2102129 - 财政年份:2021
- 资助金额:
$ 97.07万 - 项目类别:
Standard Grant
CAREER: Giant Tunability through Piezoelectric Resonant Acoustic Metamaterials for Radio Frequency Adaptive Integrated Electronics
职业:通过压电谐振声学超材料实现射频自适应集成电子器件的巨大可调性
- 批准号:
2034948 - 财政年份:2021
- 资助金额:
$ 97.07万 - 项目类别:
Continuing Grant
Acoustic Metamaterials for the Control of Railway Noise
用于控制铁路噪声的声学超材料
- 批准号:
105754 - 财政年份:2020
- 资助金额:
$ 97.07万 - 项目类别:
Study














{{item.name}}会员




