SUB-PICOSECOND CONTROL OF NANO-MAGNETS

纳米磁体的亚皮秒控制

基本信息

  • 批准号:
    EP/E055087/1
  • 负责人:
  • 金额:
    $ 91.88万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

The data storage capacity and the speed of operation of a modern laptop computer are orders of magnitude greater than those of the first computers that occupied several large rooms. To maintain the pace of progress, both the physical bit size and the data access time must be reduced even further. Under these circumstances, the nano-magnetic technology is becoming one of the strongest players in the multibillion dollar market for high speed miniature devices for data storage and processing.This constitutes the main practical motivation for the proposed research programme which has the overall aim of gaining an ever-faster control of nanoscale magnetic structures by means of sub-picosecond optical and magnetic pulses. This will require that several issues of fundamental importance be resolved, extending our knowledge and understanding of ultrafast nano-scale magnetic dynamics to a new level.The basic phenomenon exploited in the project is the Inverse Faraday Effect due to which circularly polarised optical pulses can generate sub-picosecond pulses of magnetic field (so called photo-magnetic field), which are orders of magnitude shorter than the fastest electrical and magnetic pulses produced electronically or in ultrafast photo-diodes. The pulsed photo-magnetic field due to optical pulses from an ultrafast laser will be used to manipulate the magnetisation either directly, by using the photo-magnetic field itself, or indirectly, by converting it into pulses of the Oersted magnetic field within a novel device called a Faraday Optical Transformer. The magnetisation precession excited in magnetic thin films and nanoscale elements will be then traced magneto-optically by measuring the change of polarisation acquired by a delayed optical pulse (a probe ) upon reflection from the pumped sample. The magnetisation dynamics will be studied and imaged in both small (spin waves) and large (180 degrees reversal) amplitude regimes. A combined action of multiple pulses of photo-magnetic, Oersted and / or microwave fields will be investigated and used to optimize magnetic switching characteristics.The proposed research falls within the EPSRC's Nano World (Magnetic materials), Quantum Realm (Interaction of Light and Matter), and Miniature Machines (Photonics and Optoelectronics) priority areas.
现代膝上型计算机的数据存储容量和操作速度比第一台占用几个大房间的计算机大几个数量级。为了保持进展的速度,物理位大小和数据访问时间都必须进一步减少。在这种情况下,纳米磁性技术正在成为数十亿美元的高速微型数据存储和处理设备市场上最强大的参与者之一,这构成了拟议研究计划的主要实际动机,该计划的总体目标是通过亚皮秒光和磁脉冲获得对纳米磁性结构的更快控制。这将需要解决几个基本的重要问题,将我们对超快纳米尺度磁动力学的知识和理解扩展到一个新的水平。该项目利用的基本现象是逆法拉第效应,由于该效应,圆偏振光脉冲可以产生亚皮秒脉冲磁场光磁场(所谓的光磁场),其比电子地或在超快光电二极管中产生的最快的电脉冲和磁脉冲短几个数量级。由于来自超快激光器的光脉冲而产生的脉冲光磁场将被用于直接操纵磁化,通过使用光磁场本身,或者间接操纵磁化,通过将其转换为称为法拉第光学Transformer的新型设备内的奥斯特磁场脉冲。在磁性薄膜和纳米级元件中激发的磁化旋进然后将通过测量在从泵浦样品反射时由延迟光脉冲(探针)获得的偏振的变化来磁光地追踪。磁化动力学将在小(自旋波)和大(180度反转)振幅制度进行研究和成像。将研究多个光磁脉冲、奥斯特场和/或微波场的组合作用,并用于优化磁开关特性。拟议的研究福尔斯属于EPSRC的纳米世界(磁性材料)、量子领域(光与物质的相互作用)和微型机器(光子学和光电子学)优先领域。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Role of boundaries in micromagnetic calculations of magnonic spectra of arrays of magnetic nanoelements
边界在磁性纳米元件阵列磁波谱微磁计算中的作用
  • DOI:
    10.1103/physrevb.87.174422
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Dmytriiev O
  • 通讯作者:
    Dmytriiev O
Static and dynamic magnetic properties of densely packed magnetic nanowire arrays
  • DOI:
    10.1103/physrevb.87.174429
  • 发表时间:
    2013-05-28
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Dmytriiev, O.;Al-Jarah, U. A. S.;Matefi-Tempfli, S.
  • 通讯作者:
    Matefi-Tempfli, S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Volodymyr Kruglyak其他文献

Volodymyr Kruglyak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Volodymyr Kruglyak', 18)}}的其他基金

Controlling Acoustic Metamaterials with Magnetic Resonances: The Best of Both Worlds
用磁共振控制声学超材料:两全其美
  • 批准号:
    EP/T016574/1
  • 财政年份:
    2020
  • 资助金额:
    $ 91.88万
  • 项目类别:
    Research Grant
Coherent spin waves for emerging nanoscale magnonic logic architectures
用于新兴纳米级磁波逻辑架构的相干自旋波
  • 批准号:
    EP/L019876/1
  • 财政年份:
    2014
  • 资助金额:
    $ 91.88万
  • 项目类别:
    Research Grant

相似海外基金

Picosecond superconductivity-driven spin-torques
皮秒超导驱动的自旋扭矩
  • 批准号:
    EP/Z000637/1
  • 财政年份:
    2024
  • 资助金额:
    $ 91.88万
  • 项目类别:
    Research Grant
Pitch Monitor for Picosecond Electron Bunches with BPM Signal Processing with Analog RF circuits
用于皮秒电子束的节距监视器,具有 BPM 信号处理和模拟 RF 电路
  • 批准号:
    23H03667
  • 财政年份:
    2023
  • 资助金额:
    $ 91.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on Insulation Properties and Diagnostics for Smart Electric Power Equipment by Measuring Discharge Current Using a Super High Frequency Wideband Measurement System with Picosecond resolution
利用皮秒分辨率超高频宽带测量系统测量放电电流来研究智能电力设备的绝缘性能和诊断
  • 批准号:
    23H01401
  • 财政年份:
    2023
  • 资助金额:
    $ 91.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Rapid high sensitivity and specificity diagnosis of melanoma with Picosecond infrared laser mass spectrometry
皮秒红外激光质谱快速高灵敏度和特异性诊断黑色素瘤
  • 批准号:
    487507
  • 财政年份:
    2023
  • 资助金额:
    $ 91.88万
  • 项目类别:
    Operating Grants
Elements: Streaming Molecular Dynamics Simulation Trajectories for Direct Analysis: Applications to Sub-Picosecond Dynamics in Microsecond Simulations
元素:用于直接分析的流式分子动力学模拟轨迹:微秒模拟中亚皮秒动力学的应用
  • 批准号:
    2311372
  • 财政年份:
    2023
  • 资助金额:
    $ 91.88万
  • 项目类别:
    Standard Grant
Precision picosecond laser for the microstructuring of materials
用于材料微结构的精密皮秒激光器
  • 批准号:
    516836168
  • 财政年份:
    2023
  • 资助金额:
    $ 91.88万
  • 项目类别:
    Major Research Instrumentation
Picosecond Infrared Laser Ablation Mass Spectrometry for Rapid Characterization of Biological Tissues
用于快速表征生物组织的皮秒红外激光烧蚀质谱法
  • 批准号:
    RGPIN-2018-04611
  • 财政年份:
    2022
  • 资助金额:
    $ 91.88万
  • 项目类别:
    Discovery Grants Program - Individual
Picosecond InfraRed Laser (PIRL) Technology: The Fundamental Limit to Minimally Invasive Surgery with Complete Biodiagnostics for Surgical Guidance
皮秒红外激光 (PIRL) 技术:微创手术的基本限制,具有用于手术指导的完整生物诊断
  • 批准号:
    567104-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 91.88万
  • 项目类别:
    Alliance Grants
Fibre-integrated Picosecond mid-Infrared Laser (fPIRL) for biomolecular analysis
用于生物分子分析的光纤集成皮秒中红外激光器 (fPIRL)
  • 批准号:
    EP/W029251/1
  • 财政年份:
    2022
  • 资助金额:
    $ 91.88万
  • 项目类别:
    Research Grant
Acquire a picosecond ultrafast laser for an advanced ultrafast photocurrent spectroscopy
获取皮秒超快激光器以实现先进的超快光电流光谱
  • 批准号:
    RTI-2023-00460
  • 财政年份:
    2022
  • 资助金额:
    $ 91.88万
  • 项目类别:
    Research Tools and Instruments
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了