Derived categories, stability conditions and geometric applications.
派生类别、稳定性条件和几何应用。
基本信息
- 批准号:EP/T018658/1
- 负责人:
- 金额:$ 51.65万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geometry studies higher-dimensional curved spaces. We can describe these spaces by equations, but the only case where we have any hope to use them for calculation is when the equations are polynomials. The resulting spaces are the objects of algebraic geometry, which are called varieties. Although these objects have been studied for a long time, there are still lots of crucial open problems: If we are given a variety, can we embed it in other well-known varieties? For instance, can we find a "nice'' surface which contains a given curve? If yes, how many such surfaces exist, and can we characterise them via some of the geometrical properties of the curve? The geometric information of varieties can be encoded in algebraic objects, known as derived categories. Inspired by ideas in string theory, Bridgeland introduced the notion of stability conditions on derived categories. This topic has been highly studied due to its connections to various fields in mathematics and physics, and lots of ideas and techniques have been developed in the area. Now is the time to employ the whole spectrum of modern tools in derived categories and stability conditions to solve so far intractable geometrical problems. My recent work proves that deformation of stability conditions and varying stability status of an object (wall-crossing phenomenon) are powerful new techniques for solving long-standing geometrical problems, that do not appear to involve derived categories. Surprisingly, stability conditions and wall-crossing truly provide the right context for studying those problems. The main goal of this research programme is to draw on ideas and tools in algebra, geometry and mathematical physics to describe some outstanding geometrical problems in terms of derived categories and stability conditions, and then apply wall-crossing techniques to solve them.
几何学研究高维的弯曲空间。我们可以用方程来描述这些空间,但我们唯一希望用它们来计算的情况是当方程是多项式时。由此产生的空间是代数几何的对象,称为簇。虽然这些对象已经被研究了很长时间,但仍然存在许多关键的开放问题:如果我们被赋予一个品种,我们能否将其嵌入其他知名品种?例如,我们能找到一个包含给定曲线的“好”曲面吗?如果是,有多少这样的曲面存在,我们可以通过曲线的一些几何性质来描述它们吗?簇的几何信息可以编码在代数对象中,称为派生范畴。受弦论思想的启发,布里杰兰引入了导出范畴的稳定性条件的概念。由于它与数学和物理学的各个领域都有联系,因此这个主题得到了高度的研究,并且在该领域已经开发了许多想法和技术。现在是时候采用整个频谱的现代工具在派生类别和稳定性条件,以解决迄今棘手的几何问题。我最近的工作证明,变形的稳定性条件和变化的稳定性状态的对象(跨壁现象)是强大的新技术,解决长期存在的几何问题,似乎不涉及派生类别。令人惊讶的是,稳定性条件和穿墙确实为研究这些问题提供了正确的背景。 该研究计划的主要目标是利用代数,几何和数学物理中的思想和工具来描述一些突出的几何问题的导出类别和稳定性条件,然后应用跨壁技术来解决这些问题。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Higher rank Clifford indices of curves on a K3 surface
K3 曲面上曲线的高阶 Clifford 指数
- DOI:10.1007/s00029-021-00664-z
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Feyzbakhsh S
- 通讯作者:Feyzbakhsh S
New perspectives on categorical Torelli theorems for del Pezzo threefolds
德尔佩佐三重分类托雷利定理的新视角
- DOI:10.48550/arxiv.2304.01321
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Feyzbakhsh S
- 通讯作者:Feyzbakhsh S
Serre-invariant stability conditions and Ulrich bundles on cubic threefolds
Serre 不变稳定性条件和三次三次上的 Ulrich 丛
- DOI:10.46298/epiga.2022.9611
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Feyzbakhsh S
- 通讯作者:Feyzbakhsh S
Curve counting and S-duality
曲线计数和 S 对偶性
- DOI:10.46298/epiga.2023.volume7.9818
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Feyzbakhsh S
- 通讯作者:Feyzbakhsh S
The desingularization of the theta divisor of a cubic threefold as a moduli space
三次三次的 theta 除数作为模空间的去奇异化
- DOI:
- 发表时间:
- 期刊:
- 影响因子:2
- 作者:A. Bayer, S. Beentjes, S. Feyzbakhsh, G. Hein, D. Martinelli, F. Rezaee, B. Schmidt.
- 通讯作者:A. Bayer, S. Beentjes, S. Feyzbakhsh, G. Hein, D. Martinelli, F. Rezaee, B. Schmidt.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soheyla Feyzbakhsh其他文献
Soheyla Feyzbakhsh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Sensory Phenotyping to Enhance Neuropathic Pain Drug Development
感觉表型增强神经病理性疼痛药物的开发
- 批准号:
10724809 - 财政年份:2023
- 资助金额:
$ 51.65万 - 项目类别:
Regulation of Mitochondrial Metabolism by Tyr-phosphorylated ATP Synthase Alpha-Subunit and its Therapeutic Implications in Prostate Cancer
酪氨酸磷酸化 ATP 合酶 α 亚基对线粒体代谢的调节及其在前列腺癌中的治疗意义
- 批准号:
10657090 - 财政年份:2023
- 资助金额:
$ 51.65万 - 项目类别:
Understanding genomic stability betweengenerations by assessing mutational burdens in single sperms
通过评估单个精子的突变负担来了解代际基因组稳定性
- 批准号:
10740598 - 财政年份:2023
- 资助金额:
$ 51.65万 - 项目类别:
Hepatoselective Dihydroquinolizinone (HS-DHQ) Molecules for Treatment and Prevention of Hepatitis A Virus (HAV) Infection
用于治疗和预防甲型肝炎病毒 (HAV) 感染的肝选择性二氢喹嗪酮 (HS-DHQ) 分子
- 批准号:
10698516 - 财政年份:2023
- 资助金额:
$ 51.65万 - 项目类别:
Neuropixels Opto: Integrated Silicon Probes for Cell-Type-Specific Electrophysiology
Neuropixels Opto:用于细胞类型特异性电生理学的集成硅探针
- 批准号:
10731991 - 财政年份:2023
- 资助金额:
$ 51.65万 - 项目类别:
Control of gene expression via RNA-targeted covalent probes
通过 RNA 靶向共价探针控制基因表达
- 批准号:
10607121 - 财政年份:2023
- 资助金额:
$ 51.65万 - 项目类别:
Behavioral and Neural Substrates of Odor-Guided Navigation in the Human Brain
人脑气味引导导航的行为和神经基础
- 批准号:
10366995 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别:
Astrocyte RNA degradation and cognitive function
星形胶质细胞RNA降解和认知功能
- 批准号:
10705819 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别:
Astrocyte RNA degradation and cognitive function
星形胶质细胞RNA降解和认知功能
- 批准号:
10585257 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别:
Optimization and Characterization of Novel Antifungal Peptides
新型抗真菌肽的优化和表征
- 批准号:
10620239 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别: