Enveloping algebras of infinite-dimensional Lie algebras
无限维李代数的包络代数
基本信息
- 批准号:EP/T018844/1
- 负责人:
- 金额:$ 70.77万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Mathematicians are interested in symmetry, and often model symmetry through an algebraic structure called a ring. Most rings encountered "in nature" are noncommutative: the order of operations matters. In the real world the order of operations also matters: putting on your socks before putting on your shoes gives a different result than putting on your shoes before your socks! Less frivolously, the order also matters when moving in three-dimensional space, which is why most graphics software (such as video games, and also medical imaging software) uses a noncommutative ring called the quaternions to do calculations.The symmetries of a geometric object are often modelled through an object called a Lie algebra. Lie algebras, in turn, are associated with noncommutative rings called enveloping algebras. Lie algebras are often studied through their representations, which echo the symmetry encoded in the Lie algebra. The properties of the Lie algebra and the enveloping algebra tend to depend, subtly and powerfully, on the structure of representations of the Lie algebra.The usual geometric objects that mathematicians study have finitely many dimensions: for example, the space we move around in is three-dimensional. In order to do the delicate and complicated calculations involved in quantum mechanics, however, physicists need to study spaces that have infinitely many dimensions. Their symmetries are encoded in infinite-dimensional Lie algebras.A famous infinite-dimensional Lie algebra is called the Virasoro algebra, which is renowned in mathematics and physics. It may be viewed as a mathematical model of statistical mechanics, and so is of deep importance to physics. Infinite-dimensional Lie algebras and their enveloping algebras are famously difficult to understand. For example, it has been known for almost 100 years that the enveloping algebras of finite-dimensional Lie algebras have a property called 'noetherian', named for the German mathematician Emmy Noether. Rings that are noetherian are relatively well-behaved; those that are not noetherian are more exotic. However, nobody knows if it is even possible for the enveloping algebra of an infinite-dimensional Lie algebra to be noetherian. This question was first asked in print 45 years ago, and very little progress had been made on it until I proved, in 2013, that the enveloping algebra of the Virasoro Lie algebra is not noetherian. This proof used the geometry of representations of the Virasoro algebra and so demonstrated the power of geometric techniques to understand algebraic problems.The main objective of this proposal is to prove that it is not possible for an infinite-dimensional Lie algebra to have a noetherian enveloping algebra. I will do this through a variety of methods, many focused on understanding the geometry of families of representations of infinite-dimensional Lie algebras. Understanding this will have applications to physics as well as other areas of mathematics.
数学家对对称性很感兴趣,并且经常通过一种称为环的代数结构来模拟对称性。“在自然界”遇到的大多数环都是非交换的:操作顺序很重要。在现实世界中,操作顺序也很重要:先穿袜子再穿鞋子和先穿鞋子再穿袜子的结果是不同的!不那么轻浮的是,当在三维空间中移动时,顺序也很重要,这就是为什么大多数图形软件(如视频游戏和医学成像软件)使用称为四元数的非交换环进行计算。几何对象的对称性通常是通过一个叫做李代数的对象来建模的。李代数又与称为包络代数的非交换环联系在一起。李代数通常通过它们的表示来研究,这些表示反映了李代数中编码的对称性。李代数和包络代数的性质往往微妙而有力地依赖于李代数的表示结构。数学家通常研究的几何物体具有有限多个维度:例如,我们在其中移动的空间是三维的。然而,为了进行量子力学中涉及的精细而复杂的计算,物理学家需要研究具有无限多个维度的空间。它们的对称性被编码在无限维李代数中。一个著名的无限维李代数叫做Virasoro代数,它在数学和物理学上都享有盛誉。它可以被看作是统计力学的数学模型,因此对物理学非常重要。无限维李代数及其包络代数是出了名的难以理解。例如,人们在近100年前就已经知道有限维李代数的包络代数具有一种称为“诺ether”的性质,以德国数学家Emmy Noether的名字命名。noether型的环表现相对较好;那些不是noetherian的更具有异国情调。然而,没有人知道无限维李代数的包络代数是否可能是诺etherian。这个问题在45年前首次被提出,直到2013年我证明了Virasoro Lie代数的包络代数不是noetherian,这个问题才有了很大的进展。这个证明使用了Virasoro代数的几何表示,因此证明了几何技术在理解代数问题方面的力量。本文的主要目的是证明无限维李代数不可能具有诺etherian包络代数。我将通过多种方法来做到这一点,其中许多方法侧重于理解无限维李代数表示族的几何。理解这一点将适用于物理以及其他数学领域。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Just-infinite GK-dimension of central quotients of enveloping algebras of affine Kac-Moody algebras
仿射Kac-Moody代数的包络代数的正无穷GK维数
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:R. Biswal
- 通讯作者:R. Biswal
Enveloping algebras with just infinite Gelfand-Kirillov dimension
具有无限 Gelfand-Kirillov 维数的包络代数
- DOI:10.4310/arkiv.2020.v58.n2.a4
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Iyudu N
- 通讯作者:Iyudu N
Some noncommutative minimal surfaces
一些非交换极小曲面
- DOI:10.1016/j.aim.2020.107151
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:Rogalski D
- 通讯作者:Rogalski D
Ring-theoretic blowing down II: Birational transformations
环理论吹倒 II:双有理变换
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Daniel Rogalski
- 通讯作者:Daniel Rogalski
Non-Commutative Crepant Resolutions for Some Toric Singularities I
某些环面奇点 I 的非交换 Crepant 分辨率
- DOI:10.1093/imrn/rnaa006
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Špenko Š
- 通讯作者:Špenko Š
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan Sierra其他文献
Susan Sierra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan Sierra', 18)}}的其他基金
Moduli Techniques in Graded Ring Theory and Their Applications
分级环理论中的模技术及其应用
- 批准号:
EP/M008460/1 - 财政年份:2015
- 资助金额:
$ 70.77万 - 项目类别:
Research Grant
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
[infinite]-Lie Groups and Their [infinite]-Lie Algebras in Real Cohesive Homotopy Type Theory
实内聚同伦型理论中的[无穷]-李群及其[无穷]-李代数
- 批准号:
2888102 - 财政年份:2023
- 资助金额:
$ 70.77万 - 项目类别:
Studentship
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2022
- 资助金额:
$ 70.77万 - 项目类别:
Discovery Grants Program - Individual
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2021
- 资助金额:
$ 70.77万 - 项目类别:
Discovery Grants Program - Individual
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2020
- 资助金额:
$ 70.77万 - 项目类别:
Discovery Grants Program - Individual
Enveloping algebras of infinite-dimensional Lie algebras
无限维李代数的包络代数
- 批准号:
2444690 - 财政年份:2020
- 资助金额:
$ 70.77万 - 项目类别:
Studentship
Representation categories of infinite-dimensional Lie algebras and superalgebras, and automorphisms of homogeneous ind-spaces
无限维李代数和超代数的表示范畴以及齐次 ind 空间的自同构
- 批准号:
448324667 - 财政年份:2020
- 资助金额:
$ 70.77万 - 项目类别:
Research Grants
Infinite Dimensional Lie algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1902226 - 财政年份:2019
- 资助金额:
$ 70.77万 - 项目类别:
Standard Grant
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2019
- 资助金额:
$ 70.77万 - 项目类别:
Discovery Grants Program - Individual
Isomonodromic tau-functions and representation theory of infinite dimensional algebras
等单向 tau 函数和无限维代数表示论
- 批准号:
18K03326 - 财政年份:2018
- 资助金额:
$ 70.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on infinite dimensional algebraic groups and Lie algebras, and application to quasi-periodic and aperiodic structures
无限维代数群和李代数的研究及其在准周期和非周期结构中的应用
- 批准号:
17K05158 - 财政年份:2017
- 资助金额:
$ 70.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)