Moduli Techniques in Graded Ring Theory and Their Applications

分级环理论中的模技术及其应用

基本信息

  • 批准号:
    EP/M008460/1
  • 负责人:
  • 金额:
    $ 37.51万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

A ring is a mathematical structure that models many types of symmetry. Most rings encountered "in nature" are noncommutative: the order of operations matters. This project will investigate deep relationships between noncommutative ring theory and geometry.Rings are studied through their modules: objects that echo the symmetry encoded in the ring. The structure of a ring depends subtly and powerfully on the geometry of families of modules over that ring, and this connection has led to many advances. This project will explore this connection between the geometry of families of modules and the algebraic structure of rings in depth. I will extend current methods and develop new ones, and will apply my results to important unsolved algebraic problems. An example of the power of this connection between geometry and algebra is given by the famous Virasoro algebra. The Virasoro algebra is renowned in mathematics and physics. It may be viewed as a mathematical model of statistical mechanics, and so is of deep importance to physics, particularly conformal field theory. The Virasoro algebra is a Lie algebra, rather than a ring; it can be turned into a ring by forming its so-called universal enveloping algebra. Although the Virasoro algebra had been intensively studied for many years, important basic questions about its universal enveloping algebra remained unanswered. Specifically, for at least 25 years mathematicians had been asking if the enveloping algebra of the Virasoro algebra had the noetherian property. (Rings that are noetherian are relatively well-behaved; those that are not noetherian are more exotic.) In recent joint work with Walton, I applied geometry to solve this problem: the enveloping algebra of the Virasoro algebra is not noetherian. Our work shows the power of geometric techniques to address purely algebraic problems.One key method of our proof that the enveloping algebra of the Virasoro algebra is not noetherian was to construct a simpler model, called the canonical birational commutative factor. Because it is simpler, the model is easier to study; on the other hand, passing to the model loses a great deal of information. In this project, I will develop a general method, which will apply to many more rings than the enveloping algebra of the Virasoro algebra, to construct other canonical factors that contain more information but are still amendable to study. A general construction of more complex canonical factors will be a significant advance.Through the new techniques this project will develop, I will answer many important questions in ring theory. I will use geometry to get more information about the enveloping algebra of the Virasoro algebra. I will explore whether the noetherian property described above can be detected through geometry. I will apply geometric methods to a large class of rings, of which the enveloping algebra of the Virasoro is only one example: to universal enveloping algebras of graded infinite-dimensional Lie algebras. Through these methods, I will show these rings are not noetherian. These rings are famously intractable, and this problem is inaccessible without the new methods that I will bring to bear.
环是一种数学结构,它模拟了许多类型的对称性。“自然界中”遇到的大多数环都是非对易的:操作的顺序很重要。这个项目将研究非交换环理论和几何之间的深层关系。环是通过它们的模块来研究的:反映环中编码的对称性的对象。环的结构微妙而有力地依赖于该环上模族的几何,这种联系导致了许多进展。这个项目将深入探讨模族几何和环的代数结构之间的联系。我将扩展目前的方法和发展新的,并将我的结果应用于重要的未解决的代数问题。著名的Virasoro代数给出了一个例子,说明了几何和代数之间这种联系的力量。Virasoro代数是著名的数学和物理。它可以被看作是统计力学的数学模型,因此对物理学,特别是共形场论有着深刻的重要性。Virasoro代数是一个李代数,而不是一个环;它可以通过形成其所谓的泛包络代数而变成一个环。虽然Virasoro代数已经被深入研究了很多年,但关于它的通用包络代数的重要基本问题仍然没有答案。具体来说,至少25年来,数学家们一直在问Virasoro代数的包络代数是否具有诺特性质。(诺特环相对来说行为良好,而非诺特环则更加奇特。)在最近与沃尔顿的合作中,我应用几何来解决这个问题:Virasoro代数的包络代数不是诺特代数。我们的工作显示了几何技术解决纯代数问题的能力。我们证明Virasoro代数的包络代数不是诺特代数的一个关键方法是构造一个更简单的模型,称为规范双有理交换因子。因为它更简单,模型更容易研究;另一方面,传递给模型会丢失大量信息。在这个项目中,我将开发一个通用的方法,它将适用于比Virasoro代数的包络代数更多的环,以构建包含更多信息但仍然可以研究的其他标准因子。更复杂的典型因子的一般构造将是一个重大的进步。通过这个项目将开发的新技术,我将回答环理论中的许多重要问题。我将使用几何来获得更多关于Virasoro代数的包络代数的信息。我将探讨上述诺特性质是否可以通过几何学来检测。我将把几何方法应用于一个大类的环,其中Virasoro的包络代数只是一个例子:分次无限维李代数的泛包络代数。通过这些方法,我将证明这些环不是诺特环。这些环是出了名的难处理,如果没有我将带来的新方法,这个问题是无法解决的。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3D Capsule Networks for Brain Image Segmentation
  • DOI:
    10.3174/ajnr.a7845
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    A. Avesta;Y. Hui;M. Aboian;J. Duncan;H. Krumholz;S. Aneja
  • 通讯作者:
    A. Avesta;Y. Hui;M. Aboian;J. Duncan;H. Krumholz;S. Aneja
On a Dynamical Mordell-Lang Conjecture for Coherent Sheaves
相干滑轮的动力学 Mordell-Lang 猜想
  • DOI:
    10.48550/arxiv.1611.05885
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bell Jason P.
  • 通讯作者:
    Bell Jason P.
Positive trace polynomials and the universal Procesi–Schacher conjecture
正迹多项式和普适 ProcesiâSchacher 猜想
Path algebras of quivers and representations of locally finite Lie algebras
箭袋的路径代数和局部有限李代数的表示
  • DOI:
    10.48550/arxiv.1512.08362
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hennig J.
  • 通讯作者:
    Hennig J.
Enveloping algebras with just infinite Gelfand-Kirillov dimension
具有无限 Gelfand-Kirillov 维数的包络代数
  • DOI:
    10.4310/arkiv.2020.v58.n2.a4
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iyudu N
  • 通讯作者:
    Iyudu N
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susan Sierra其他文献

Susan Sierra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susan Sierra', 18)}}的其他基金

Enveloping algebras of infinite-dimensional Lie algebras
无限维李代数的包络代数
  • 批准号:
    EP/T018844/1
  • 财政年份:
    2020
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Research Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0802935
  • 财政年份:
    2008
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Fellowship

相似国自然基金

EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金

相似海外基金

Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Continuing Grant
Creating a reflective, assessment workbook for University teachers to enhance teaching techniques and improve student engagement, by incorporating International Baccalaureate (IB) teaching practices
通过纳入国际文凭 (IB) 教学实践,为大学教师创建反思性评估工作簿,以提高教学技巧并提高学生参与度
  • 批准号:
    24K06129
  • 财政年份:
    2024
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
  • 批准号:
    24K20733
  • 财政年份:
    2024
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of new molecular self-temperature sensing techniques using luminescence-absorption hybrid thermometry
利用发光-吸收混合测温法开发新型分子自温度传感技术
  • 批准号:
    24K17691
  • 财政年份:
    2024
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel techniques of percutaneous sonography-guided surgical operations (SonoSurgery
经皮超声引导外科手术新技术(SonoSurgery
  • 批准号:
    10087309
  • 财政年份:
    2024
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Collaborative R&D
ConSenT: Connected Sensing Techniques: Cooperative Radar Networks Using Joint Radar and Communication Waveforms
ConSenT:互联传感技术:使用联合雷达和通信波形的协作雷达网络
  • 批准号:
    EP/Y035933/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Fellowship
ERI: SDR Beyond Radio: Enabling Experimental Research in Multi-Node Optical Wireless Networks via Software Defined Radio Tools and Techniques
ERI:超越无线电的 SDR:通过软件定义无线电工具和技术实现多节点光无线网络的实验研究
  • 批准号:
    2347514
  • 财政年份:
    2024
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Standard Grant
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
  • 批准号:
    2348490
  • 财政年份:
    2024
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了