Infinite Dimensional Lie algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
基本信息
- 批准号:1902226
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The concept behind proposed research can be characterized as the study of mathematical aspects of symmetry properties in quantum theory and statistical mechanics. The first part of the project is focused on the objects which appear in the analysis of models of quantum field theory in two-dimensional space time with special conditions on the boundary. In the second part the PI will study the reasons why some mechanical systems can be solved exactly analytically and the symmetry arguments that go with this. The third and the fifth parts are related to questions involving statistical aspects of symmetry. The fourth part of the project is to connect quantum mechanics and a special two dimensional quantum field theory. This part is expected to bring new insight into now relatively the old subject of quantum mechanics.In the first part of the project the PI proposes to investigate Harish-Chandra series in a broad setting of finite dimensional simple Lie groups, affine Lie groups and their quantum counterparts. The second part can be viewed as a classical counterpart of the first part. It appears that a classical Hamiltonian counterpart of Harish-Chandra theory is a superintegrable system. The third and the fifth parts outline projects at the interface of representation theory and statistical mechanics. One of the specific directions here is the study of of limit shapes in integrable models of statistical mechanics. The fourth part of the project is built of prior results of the PI and the main goal is to give a description of a full semiclassical asymptotic of eigenfunctions of integrable systems in terms of Feynman diagrams for the corresponding Poisson sigma model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拟议研究背后的概念可以被描述为量子理论和统计力学中对称性的数学方面的研究。该项目的第一部分是集中在对象出现在二维时空与边界上的特殊条件的量子场论模型的分析。在第二部分中,PI将研究为什么某些力学系统可以精确地解析求解的原因以及与此相关的对称性参数。第三和第五部分涉及对称性的统计方面的问题。第四部分是将量子力学与一个特殊的二维量子场论联系起来。这一部分有望为量子力学这个相对古老的学科带来新的见解。在项目的第一部分中,PI提出在有限维简单李群、仿射李群及其量子对应物的广泛背景下研究Harish-Chandra级数。第二部分可以被看作是第一部分的经典对应部分。看来,一个经典的哈密尔顿对应的哈里什-钱德拉理论是一个超可积系统。第三和第五部分概述了表征理论和统计力学的接口项目。这里的一个具体方向是研究统计力学可积模型中的极限形状。该项目的第四部分是建立在PI的先前结果和主要目标是给出一个完整的半经典渐近的可积系统的特征函数的Feynman图为相应的泊松sigma模型的描述。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Folded quantum integrable models and deformed
折叠量子可积模型和变形
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:1.2
- 作者:E.Frenkel, D.Hernandez
- 通讯作者:E.Frenkel, D.Hernandez
On multiplicities of irreducibles in large tensor product of representations of simple Lie algebras
简单李代数表示的大张量积中不可约重数
- DOI:10.1007/s11005-019-01217-4
- 发表时间:2020
- 期刊:
- 影响因子:1.2
- 作者:Postnova, Olga;Reshetikhin, Nicolai
- 通讯作者:Reshetikhin, Nicolai
The two-point correlation function in the six-vertex model
六顶点模型中的两点相关函数
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:P. Belov;N. Reshetikhin
- 通讯作者:N. Reshetikhin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicolai Reshetikhin其他文献
On Invariants of Graphs Related to Quantum $${\mathfrak {sl}(2)}$$ at Roots of Unity
论统一根处与量子 $${mathfrak {sl}(2)}$$ 相关的图的不变量
- DOI:
10.1007/s11005-009-0320-9 - 发表时间:
2009 - 期刊:
- 影响因子:1.2
- 作者:
Nathan Geer;Nicolai Reshetikhin - 通讯作者:
Nicolai Reshetikhin
ON 2 d YANG-MILLS THEORY AND INVARIANTS OF LINKSMICHAEL POLYAK AND
二维Yang-Mills理论和LINKSMICHAEL POLYAK和的不变量
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Michael Polyak;Nicolai Reshetikhin - 通讯作者:
Nicolai Reshetikhin
Graphical Calculus for Quantum Vertex Operators, I: The Dynamical Fusion Operator
量子顶点算子的图解演算,I:动态融合算子
- DOI:
10.1007/s00220-024-04984-x - 发表时间:
2024 - 期刊:
- 影响因子:2.4
- 作者:
Hadewijch De Clercq;Nicolai Reshetikhin;Jasper Stokman - 通讯作者:
Jasper Stokman
Flat Connections from Irregular Conformal Blocks
不规则保形块的扁平连接
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Babak Haghighat;Yihua Liu;Nicolai Reshetikhin - 通讯作者:
Nicolai Reshetikhin
Random Skew Plane Partitions with a Piecewise Periodic Back Wall
- DOI:
10.1007/s00023-011-0120-5 - 发表时间:
2011-06-28 - 期刊:
- 影响因子:1.300
- 作者:
Cedric Boutillier;Sevak Mkrtchyan;Nicolai Reshetikhin;Peter Tingley - 通讯作者:
Peter Tingley
Nicolai Reshetikhin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicolai Reshetikhin', 18)}}的其他基金
FRG: Collaborative Research: Homotopy Renormalization of Topological Field Theories
FRG:协作研究:拓扑场论的同伦重正化
- 批准号:
1664521 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1601947 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1201391 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Travel Support: Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
旅行支持:无限维李代数、量子群及其应用
- 批准号:
1059160 - 财政年份:2010
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
0901431 - 财政年份:2009
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
0601912 - 财政年份:2006
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Infinite Dimensional Lie Algebras, Quantum Groups, and their Applications
无限维李代数、量子群及其应用
- 批准号:
0307599 - 财政年份:2003
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Infinite Dimensional Lie Algebras, Quantum Groups, and their Applications
无限维李代数、量子群及其应用
- 批准号:
0070931 - 财政年份:2000
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
U.S.-German Cooperative Research on Discrete Integrable Systems
美德离散可积系统合作研究
- 批准号:
9603239 - 财政年份:1997
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups, and their Applications
无限维李代数、量子群及其应用
- 批准号:
9700921 - 财政年份:1997
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Application of Galois cohomology to infinite dimensional Lie theory
伽罗瓦上同调在无限维李理论中的应用
- 批准号:
RGPIN-2016-04651 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Representations in Infinite-Dimensional Lie Theory
无限维李理论中的表示
- 批准号:
RGPIN-2017-04280 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Lie Groupoids and Infinite-Dimensional Dynamical Systems
李群群和无限维动力系统
- 批准号:
2008021 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Representations in Infinite-Dimensional Lie Theory
无限维李理论中的表示
- 批准号:
RGPIN-2017-04280 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Enveloping algebras of infinite-dimensional Lie algebras
无限维李代数的包络代数
- 批准号:
2444690 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Studentship
Application of Galois cohomology to infinite dimensional Lie theory
伽罗瓦上同调在无限维李理论中的应用
- 批准号:
RGPIN-2016-04651 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Enveloping algebras of infinite-dimensional Lie algebras
无限维李代数的包络代数
- 批准号:
EP/T018844/1 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Research Grant