H2-Heat: Thermal energy transport for heating and cooling with innovative hydrogen(H2) technologies
H2-Heat:利用创新的氢 (H2) 技术进行加热和冷却的热能传输
基本信息
- 批准号:EP/T022760/1
- 负责人:
- 金额:$ 126.81万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the UK, heat accounts for over a third of the nation's greenhouse gas emissions. Most of the heating and cooling in our industries and buildings are delivered directly or indirectly by fossil fuels. Apart from the greenhouse emissions, the extensive consumption of fossil fuels can also lead to a large depletion of energy resources, waste heat production and pollution to the surrounding environment. To meet the target of Net Zero greenhouse gas emissions by 2050, there is an urgent need for decarbonising heating and cooling by utilising renewable energy and industrial waste heat with advanced technologies. Compared to renewable energy such as solar, the resources from industrial waste heat have clear advantages including greater stabilisation, less cost and larger temperature ranges. Therefore, industrial waste heat recovery for decarbonised heating and cooling is an attractive concept that could simultaneously reduce fossil fuel consumption and CO2 emissions. Evidently, in the UK, based on a recent report, it was identified that around 48 TWh/yr industrial waste heat sources were available of which about 28 TWh/yr could be potentially used to meet the heating and cooling demands. All heat-intensive industrial sectors including iron & steel, refineries, ceramics, glass, cement, chemicals, food and drink, paper and pulp can contribute to this potential. Even so, high efficient energy conversion systems need to be designed and applied so as to maximize the waste heat utilisations for heating and cooling. On the other hand, the locations of industrial waste heat providers such as steel plants are mostly far away from the utilisers for heating and cooling. Conventionally, hot water heated by the industrial waste heat is transported through long distance water pipe to the end user site which can cause huge pump power consumption and heat losses due to significant friction pressure drop for the water flow and large temperature difference between water flow and ambient. There are therefore challenges to the long-distance waste heat transport and high-efficient and innovative energy conversion technologies for the decarbonising heating and cooling. To address these challenges, in this proposal, strategies for a novel concept of decarbonising district heating and cooling system (H2-heat) will be developed with the integration of metal hydride (MH) heat pump on site, long distance hydrogen and heat transport, and MH heating and cooling for end users. In such a system, low grade heat (~210C) and extra low grade heat (~40C) from TATA Steel plant or a similar industry site will be used as heat sources while building heating and cooling spaces are applied as heat sink and low temperature heat source respectively at end user side. Technologies of MH heat pump, a thermal driven chemical compressor with MH, long distance hydrogen and heat transport, MH space heating and cooling, MH alloys and reactors applied in the systems and processes, controls for space heating and cooling etc. will be identified and investigated. Ultimately, a decarbonising district heating and cooling test system with industrial waste heat from TATA Steel plant or other industrial sites will be constructed in lab with 5 kWth heating or cooling capacity and high heat transport efficiency. Furthermore, a detailed mathematical model will be developed and validated for the established system; this can be used for a system scale-up into actual application in TATA Steel plant or other industrial sites where low grade waste heat is available. As yet, no research activity on such a system can be found either nationally or internationally. Important reasons include the difficulty in choosing a thermal driven long distance hydrogen and heat transport system and associated MH alloys for space heating and cooling and complicated designs of MH reactors in the H2-heat system. These challenges and issues will be addressed and solved by this proposed project.
在英国,供暖占该国温室气体排放量的三分之一以上。我们的工业和建筑中的大部分供暖和制冷都是直接或间接由化石燃料提供的。除了温室气体排放外,化石燃料的大量使用还会导致能源资源的大量枯竭、废热的产生以及对周围环境的污染。为了在2050年达到温室气体净零排放的目标,我们迫切需要利用可再生能源和先进技术的工业废热来脱碳供暖和制冷。与太阳能等可再生能源相比,工业废热资源具有明显的优势,包括更高的稳定性、更低的成本和更大的温度范围。因此,工业废热回收用于脱碳加热和冷却是一个有吸引力的概念,可以同时减少化石燃料消耗和二氧化碳排放。显然,在英国,根据最近的一份报告,确定了大约48太瓦时/年的工业废热来源,其中约28太瓦时/年可用于满足供暖和制冷需求。所有热密集型工业部门,包括钢铁、炼油厂、陶瓷、玻璃、水泥、化工、食品和饮料、造纸和纸浆都可以发挥这一潜力。即便如此,仍需要设计和应用高效的能量转换系统,以最大限度地利用余热来加热和冷却。另一方面,工业废热供应商(如钢铁厂)的位置大多远离供暖和制冷的使用者。传统的工业余热加热的热水通过长距离水管输送到最终用户现场,由于水流摩擦压降大,水流与环境温差大,会造成巨大的泵功率消耗和热损失。因此,长距离余热传输和高效创新的脱碳加热和冷却能量转换技术面临挑战。为了应对这些挑战,在本提案中,将开发脱碳区域供热和供冷系统(H2-heat)的新概念,并将现场的金属氢化物(MH)热泵、远距离氢和热传输以及最终用户的MH供热和供冷集成在一起。在该系统中,将使用塔塔钢铁厂或类似工业场所的低品位热量(~210℃)和特低品位热量(~40℃)作为热源,而最终用户端的建筑加热和冷却空间分别作为散热器和低温热源。将确定和研究MH热泵、MH热驱动化学压缩机、长距离氢和热传输、MH空间加热和冷却、系统和过程中应用的MH合金和反应器、空间加热和冷却控制等技术。最终,利用塔塔钢铁厂或其他工业场地的工业余热,在实验室建造一个供热或供冷能力为5kwth,热传导效率高的脱碳区域供热和供冷试验系统。此外,将为建立的系统开发和验证详细的数学模型;这可以用于塔塔钢铁厂或其他低品位废热可用的工业场所的系统放大到实际应用。到目前为止,在国内或国际上都找不到关于这种制度的研究活动。重要的原因包括热驱动的长距离氢热传输系统和相关的MH合金难以选择用于空间加热和冷却,以及h2 -热系统中MH反应器设计复杂。这些挑战和问题将通过这个拟议的项目来解决。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Alloy Selections in High-Temperature Metal Hydride Heat Pump Systems for Industrial Waste Heat Recovery
用于工业余热回收的高温金属氢化物热泵系统的合金选择
- DOI:10.2139/ssrn.3967478
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Ge Y
- 通讯作者:Ge Y
Performance analysis of a metal hydride refrigeration system
金属氢化物制冷系统性能分析
- DOI:10.1016/j.applthermaleng.2023.121264
- 发表时间:2023
- 期刊:
- 影响因子:6.4
- 作者:Ge Y
- 通讯作者:Ge Y
Experimental investigation and CFD modelling analysis of finned-tube PCM heat exchanger for space heating
- DOI:10.1016/j.applthermaleng.2024.122731
- 发表时间:2024-05
- 期刊:
- 影响因子:6.4
- 作者:X.Y. Zhang;Y.T. Ge;Burra;P.Y. Lang
- 通讯作者:X.Y. Zhang;Y.T. Ge;Burra;P.Y. Lang
Characterisation of pressure-concentration-temperature profiles for metal hydride hydrogen storage alloys with model development
通过模型开发表征金属氢化物储氢合金的压力-浓度-温度曲线
- DOI:10.1002/est2.504
- 发表时间:2023
- 期刊:
- 影响因子:3.2
- 作者:Ge Y
- 通讯作者:Ge Y
The effect of heat conduction through fins on the performance of finned-tube CO2 supercritical gas coolers
- DOI:10.1016/j.ijheatmasstransfer.2021.121908
- 发表时间:2021-12
- 期刊:
- 影响因子:5.2
- 作者:X. Zhang;Y. Ge
- 通讯作者:X. Zhang;Y. Ge
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yunting Ge其他文献
Indirect expansion solar assisted heat pump system for hot water production with latent heat storage and applicable control strategy
- DOI:
10.1016/j.egypro.2017.07.258 - 发表时间:
2017-09-01 - 期刊:
- 影响因子:
- 作者:
Walid Youssef;Yunting Ge;Savvas A. Tassou - 通讯作者:
Savvas A. Tassou
Exploring the effect of a dual-rotor turbine on the performance of a surround-flow seawater desalination-solar chimney power plant
探究双转子涡轮对环绕流海水淡化-太阳能烟囱发电厂性能的影响
- DOI:
10.1016/j.renene.2025.123635 - 发表时间:
2025-11-01 - 期刊:
- 影响因子:9.100
- 作者:
Lu Zuo;Chenkai Xiao;Long Huang;Zinan Guo;Yunting Ge - 通讯作者:
Yunting Ge
Analysis of characteristics of seawater desalination-solar chimney power plant under double-layer collector
- DOI:
10.1016/j.applthermaleng.2024.124274 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Lu Zuo;Long Huang;Ziyang Yan;Chenkai Xiao;Zinan Guo;Yunting Ge - 通讯作者:
Yunting Ge
Experimental investigation of gas bubble diameter distribution in a domestic heat pump water heating system
- DOI:
10.1016/j.egypro.2017.07.270 - 发表时间:
2017-09-01 - 期刊:
- 影响因子:
- 作者:
Jianbo Qin;Xianghua Jiang;Yunting Ge - 通讯作者:
Yunting Ge
Experimental and simulation study on the performance of corrugated plate enhanced solar chimney power plant combined with distillation system
波纹板强化太阳能烟囱发电与蒸馏系统相结合的性能的实验及模拟研究
- DOI:
10.1016/j.desal.2025.118534 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.800
- 作者:
Lu Zuo;Chenkai Xiao;Ziyang Yan;Zinan Guo;Long Huang;Yunting Ge - 通讯作者:
Yunting Ge
Yunting Ge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yunting Ge', 18)}}的其他基金
Bio-CO2: Power Generation and Heat Recovery from Biomass with Advanced CO2 Thermodynamic Power Cycles and Novel Heat Exchanger Designs
生物二氧化碳:利用先进的二氧化碳热力学动力循环和新颖的热交换器设计从生物质中发电和热回收
- 批准号:
EP/R000298/3 - 财政年份:2020
- 资助金额:
$ 126.81万 - 项目类别:
Research Grant
Bio-CO2: Power Generation and Heat Recovery from Biomass with Advanced CO2 Thermodynamic Power Cycles and Novel Heat Exchanger Designs
生物二氧化碳:利用先进的二氧化碳热力学动力循环和新颖的热交换器设计从生物质中发电和热回收
- 批准号:
EP/R000298/2 - 财政年份:2018
- 资助金额:
$ 126.81万 - 项目类别:
Research Grant
Bio-CO2: Power Generation and Heat Recovery from Biomass with Advanced CO2 Thermodynamic Power Cycles and Novel Heat Exchanger Designs
生物二氧化碳:利用先进的二氧化碳热力学动力循环和新颖的热交换器设计从生物质中发电和热回收
- 批准号:
EP/R000298/1 - 财政年份:2017
- 资助金额:
$ 126.81万 - 项目类别:
Research Grant
Power Generation and Heat Recovery from Industrial Waste Heat with Advanced CO2 Thermodynamic Power Cycles (CO2Power)
利用先进的二氧化碳热力动力循环 (CO2Power) 从工业废热中发电和热回收
- 批准号:
EP/L505869/1 - 财政年份:2014
- 资助金额:
$ 126.81万 - 项目类别:
Research Grant
相似国自然基金
环路热管(Loop Heat Pipe)两相传热机理的理论与实验研究
- 批准号:50676006
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
- 批准号:
2327571 - 财政年份:2023
- 资助金额:
$ 126.81万 - 项目类别:
Standard Grant
Establishment of thermal property evaluation and performance design method for multi-functional panels utilizing heat insulation and heat storage by wood
木材隔热蓄热多功能板材热性能评价及性能设计方法的建立
- 批准号:
23K04145 - 财政年份:2023
- 资助金额:
$ 126.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study of thermal photonics power generation for effective utilization of waste heat energy
有效利用余热的热光子发电研究
- 批准号:
23H01353 - 财政年份:2023
- 资助金额:
$ 126.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
- 批准号:
2327572 - 财政年份:2023
- 资助金额:
$ 126.81万 - 项目类别:
Standard Grant
Study on calibration protocol for practically manufacturable MEMS heat flux sensor using thermal response
利用热响应对可实际制造的MEMS热通量传感器进行校准协议的研究
- 批准号:
23K13268 - 财政年份:2023
- 资助金额:
$ 126.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Characterising Flow Regimes and Transitions, Heat Transport and Energy/Enstrophy Cascades in Rapidly Rotating Thermal Convection
表征快速旋转热对流中的流动状态和转变、热传输和能量/熵级联
- 批准号:
EP/W022087/1 - 财政年份:2023
- 资助金额:
$ 126.81万 - 项目类别:
Research Grant
Understanding the role of water molecule diffusion in nanoscale heat transfer for improving thermal energy output of thermochemical heat storage material
了解水分子扩散在纳米级传热中的作用,以提高热化学储热材料的热能输出
- 批准号:
23K13818 - 财政年份:2023
- 资助金额:
$ 126.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A new view of the thermal structure of continental mountain ranges: the importance of igneous heat transport
大陆山脉热结构的新观点:火成热输送的重要性
- 批准号:
NE/W00562X/1 - 财政年份:2023
- 资助金额:
$ 126.81万 - 项目类别:
Research Grant
MIX-MOXes - Mixed Metal Oxides Energy Stations for zero-carbon thermal energy generation with integrated heat storage
MIX-MOXes - 混合金属氧化物能源站,用于通过集成热存储实现零碳热能发电
- 批准号:
EP/X000249/1 - 财政年份:2023
- 资助金额:
$ 126.81万 - 项目类别:
Research Grant
CAREER: Universal Dynamics of Thermal Fluctuations in Pool Boiling and Their Role in Predicting Critical Heat Flux
职业:池沸腾中热波动的普遍动力学及其在预测临界热通量中的作用
- 批准号:
2145075 - 财政年份:2022
- 资助金额:
$ 126.81万 - 项目类别:
Continuing Grant














{{item.name}}会员




