AUTONOMOUS METHOD FOR DETECTING CUTTING TOOL AND MACHINE TOOL ANOMALIES IN MACHINING
机械加工中检测刀具和机床异常的自主方法
基本信息
- 批准号:EP/T024291/1
- 负责人:
- 金额:$ 131.67万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In advanced manufacturing, there exists a rising demand for both high productivity and producing high-performance components with tighter tolerances. In order to meet these requirements, monitoring cutting tool conditions and machine tool health is needed to improve dimensional accuracy of workpiece, extend the cutting tool life, minimise machine tool down time and eliminate scrap and re-work costs. Traditionally, monitoring cutting tool conditions and machine tool health is carried out by operators who perform a manual inspection, which often causes unnecessary stoppages of machine tools and, as a result, costs incurred from lost productivity. However, without a timely inspection of both cutter status and machine tool working conditions, cutter wear or breakage and machine tool malfunction can take place during machining causing significant damage to workpieces. Some researchers have estimated that the amount of machine tool downtime due to these problems is around 6.8% while others put the figure closer to 20%. Therefore, manufacturing costs can be significantly higher than necessary when either cutters are changed before the end of their useful life or after cutter wear and breakage or machine tool malfunction have caused damage to workpieces. Consequently, a real time and automatic inspection of cutting tool status and machine tool health conditions is needed to profoundly address these problems. This project aims to propose a fundamental solution to the challenges faced by current technologies and develop innovative techniques that can autonomously detect cutting tool and machine tool anomalies in machining for advanced manufacturing. This innovative solution will be based on a novel approach known as sensor data modelling and model frequency analysis, which is uniquely developed by the PI's team at Sheffield and has recently found applications in the condition monitoring and fault diagnosis of a wide range of engineering systems and structures. The project will involve a close multi-disciplinary collaboration of ACSE academics, AMRC engineers, and industrial partners. The novel project idea and this unique research collaboration are expected to fundamentally resolve many challenges and produce urgently needed diagnostic technologies for autonomously detecting cutting tool and machine tool anomalies in machining for advanced manufacturing industry in UK.
在先进制造业中,对高生产率和生产具有更严格公差的高性能部件的需求不断增加。为了满足这些要求,需要监控切削刀具状况和机床健康状况,以提高工件的尺寸精度,延长切削刀具寿命,最大限度地减少机床停机时间,并消除废料和返工成本。 传统上,监控切削刀具状况和机床健康状况是由执行手动检查的操作员执行的,这通常会导致机床不必要的停机,并因此导致因生产率损失而产生的成本。然而,如果不及时检查刀具状态和机床工作条件,则在加工过程中可能发生刀具磨损或断裂以及机床故障,从而对工件造成重大损害。一些研究人员估计,由于这些问题造成的机床停机时间约为6.8%,而其他人则认为这一数字接近20%。因此,当刀具在其使用寿命结束之前或在刀具磨损和破损或机床故障已经对工件造成损坏之后更换刀具时,制造成本可能显著高于所需成本。因此,需要对刀具状态和机床健康状况进行真实的实时和自动的检测,以深刻地解决这些问题。该项目旨在为当前技术所面临的挑战提出根本解决方案,并开发能够自主检测先进制造加工中刀具和机床异常的创新技术。这种创新的解决方案将基于一种称为传感器数据建模和模型频率分析的新方法,该方法由PI在谢菲尔德的团队独特开发,最近在广泛的工程系统和结构的状态监测和故障诊断中得到了应用。 该项目将涉及ACSE学者,AMRC工程师和工业合作伙伴的密切多学科合作。新颖的项目理念和这种独特的研究合作有望从根本上解决许多挑战,并产生急需的诊断技术,用于自动检测英国先进制造业加工中的刀具和机床异常。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tool Condition Monitoring Based on Nonlinear Output Frequency Response Functions and Multivariate Control Chart
基于非线性输出频率响应函数和多元控制图的工具状态监测
- DOI:10.37965/jdmd.2023.472
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Gui Y
- 通讯作者:Gui Y
Vibration Signal-Based Tool Condition Monitoring Using Regularized Sensor Data Modeling and Model Frequency Analysis
- DOI:10.1109/tim.2023.3343825
- 发表时间:2024
- 期刊:
- 影响因子:5.6
- 作者:Zepeng Liu;Zi-Qiang Lang;Yufei Gui;Yun-Peng Zhu;Hatim Laalej;David Curtis
- 通讯作者:Zepeng Liu;Zi-Qiang Lang;Yufei Gui;Yun-Peng Zhu;Hatim Laalej;David Curtis
Time-Sensor Domain Data Decomposition and Analysis for Fault Diagnosis of Cutting Tools
- DOI:10.1109/icarcv57592.2022.10004293
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Yufei Gui;Z. Lang;Zepeng Liu;Yunpeng Zhu;H. Laalej
- 通讯作者:Yufei Gui;Z. Lang;Zepeng Liu;Yunpeng Zhu;H. Laalej
Online Rotor Systems Condition Monitoring Using Nonlinear Output Frequency Response Functions Under Harmonic Excitations
- DOI:10.1109/tii.2022.3141866
- 发表时间:2022-10-01
- 期刊:
- 影响因子:12.3
- 作者:Zhu, Yun-Peng;Zhao, Yu-Lai;Liu, Yang
- 通讯作者:Liu, Yang
Sensor Data Modeling and Model Frequency Analysis for Detecting Cutting Tool Anomalies in Machining
- DOI:10.1109/tsmc.2022.3218536
- 发表时间:2022-11-10
- 期刊:
- 影响因子:8.7
- 作者:Liu, Zepeng;Lang, Zi-Qiang;Stammers, Jon
- 通讯作者:Stammers, Jon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zi-Qiang Lang其他文献
Modelling adrenal steroid profiles to inform monitoring guidance in congenital adrenal hyperplasia
建立肾上腺类固醇图谱模型以为先天性肾上腺皮质增生症的监测指导提供信息
- DOI:
10.1016/j.ebiom.2025.105749 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:10.800
- 作者:
Neil R. Lawrence;Jeremy Dawson;Zi-Qiang Lang;Alessandro Prete;Elizabeth S. Baranowski;Lina Schiffer;Angela E. Taylor;Aude Brac de la Perrière;Angelica Lindén Hirschberg;Anders Juul;Deborah P. Merke;John Newell-Price;D. Aled Rees;Nicole Reisch;Nike Stikkelbroeck;Philippe A. Touraine;Nils Krone;Brian Keevil;Gary S. Collins;Wiebke Arlt;Richard J.M. Ross - 通讯作者:
Richard J.M. Ross
Digital twin-based anomaly detection for real-time tool condition monitoring in machining
- DOI:
10.1016/j.jmsy.2024.06.004 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Zepeng Liu;Zi-Qiang Lang;Yufei Gui;Yun-Peng Zhu;Hatim Laalej - 通讯作者:
Hatim Laalej
Deep learning-based electrical impedance spectroscopy analysis for malignant and potentially malignant oral disorder detection
基于深度学习的电阻抗谱分析用于恶性和潜在恶性口腔疾病的检测
- DOI:
10.1038/s41598-025-05116-8 - 发表时间:
2025-06-03 - 期刊:
- 影响因子:3.900
- 作者:
Zhicheng Lin;Zi-Qiang Lang;Lingzhong Guo;Dawn C Walker;Malwina Matella;Mengxiao Wang;Craig Murdoch - 通讯作者:
Craig Murdoch
On identification of the controlled plants described by the Hammerstein system
- DOI:
10.1109/9.280761 - 发表时间:
1994-03 - 期刊:
- 影响因子:6.8
- 作者:
Zi-Qiang Lang - 通讯作者:
Zi-Qiang Lang
Dynamic monitoring of a masonry arch rail bridge using a distributed fiber optic sensing system
- DOI:
10.1007/s13349-024-00774-0 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:4.300
- 作者:
Liangliang Cheng;Alfredo Cigada;Emanuele Zappa;Matthew Gilbert;Zi-Qiang Lang - 通讯作者:
Zi-Qiang Lang
Zi-Qiang Lang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zi-Qiang Lang', 18)}}的其他基金
Application of Novel Nonlinear Data Modelling and Analysis to the Study of Cervical Impedance Spectroscopy for Preterm Birth Prediction
新型非线性数据建模和分析在宫颈阻抗谱早产预测研究中的应用
- 批准号:
EP/R018480/1 - 财政年份:2018
- 资助金额:
$ 131.67万 - 项目类别:
Research Grant
SYstems Science-based design and manufacturing of DYnamic MATerials and Structures (SYSDYMATS)
系统 基于科学的动态材料和结构设计和制造 (SYSDYMATS)
- 批准号:
EP/R032793/1 - 财政年份:2018
- 资助金额:
$ 131.67万 - 项目类别:
Research Grant
New Generation Damping Technologies
新一代阻尼技术
- 批准号:
EP/F017715/1 - 财政年份:2008
- 资助金额:
$ 131.67万 - 项目类别:
Research Grant
相似国自然基金
偏线性分位数样本截取和选择模型的估计与应用—基于非参数筛分法(Sieve Method)
- 批准号:72273091
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Development of a method for detecting traces of biological activity using multi-transition metal stable isotopes
开发使用多过渡金属稳定同位素检测生物活性痕迹的方法
- 批准号:
23K17707 - 财政年份:2023
- 资助金额:
$ 131.67万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Study on a method for detecting changes in the state of biological systems and its application to the diagnosis of fetal dysfunction
生物系统状态变化检测方法及其在胎儿功能障碍诊断中的应用研究
- 批准号:
23K03875 - 财政年份:2023
- 资助金额:
$ 131.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a novel caries dentin disinfection method by application of aPDT combined with caries-detecting solution and xenon light
应用aPDT结合龋齿检测液和氙灯开发新型龋齿牙本质消毒方法
- 批准号:
23K16030 - 财政年份:2023
- 资助金额:
$ 131.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Establishment of a new quantitative evaluation method for detecting concrete defects by automatic scanning based on the principle of radiation scattering attenuation.
基于辐射散射衰减原理建立自动扫描检测混凝土缺陷定量评价新方法。
- 批准号:
23H01556 - 财政年份:2023
- 资助金额:
$ 131.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a novel method for detecting micro-pancreatic cancer using genome function analysis
开发利用基因组功能分析检测微胰腺癌的新方法
- 批准号:
21K08746 - 财政年份:2021
- 资助金额:
$ 131.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing a method for detecting improper mercury trade flow into countries that have artisanal and small-scale gold mining (ASGM) activities
开发一种方法来检测流入从事手工和小规模采金 (ASGM) 活动的国家的不当汞贸易
- 批准号:
21K17922 - 财政年份:2021
- 资助金额:
$ 131.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
I-Corps: A bisulfite-free method of quantifying the methylation patterns for detecting cancer recurrence in blood
I-Corps:一种无亚硫酸氢盐的定量甲基化模式的方法,用于检测血液中的癌症复发
- 批准号:
2131361 - 财政年份:2021
- 资助金额:
$ 131.67万 - 项目类别:
Standard Grant
Development of a method for detecting degradation products of chemical warfare agents
化学战剂降解产物检测方法的开发
- 批准号:
21K04562 - 财政年份:2021
- 资助金额:
$ 131.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of method for detecting viral protease activity using affinity competition
亲和竞争检测病毒蛋白酶活性方法的建立
- 批准号:
21K05301 - 财政年份:2021
- 资助金额:
$ 131.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a method for detecting F. nucleatum, which is a high risk for colorectal cancer, from saliva
开发一种从唾液中检测具有结直肠癌风险的具核梭菌的方法
- 批准号:
21K09851 - 财政年份:2021
- 资助金额:
$ 131.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




