AUTONOMOUS METHOD FOR DETECTING CUTTING TOOL AND MACHINE TOOL ANOMALIES IN MACHINING
机械加工中检测刀具和机床异常的自主方法
基本信息
- 批准号:EP/T024291/1
- 负责人:
- 金额:$ 131.67万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In advanced manufacturing, there exists a rising demand for both high productivity and producing high-performance components with tighter tolerances. In order to meet these requirements, monitoring cutting tool conditions and machine tool health is needed to improve dimensional accuracy of workpiece, extend the cutting tool life, minimise machine tool down time and eliminate scrap and re-work costs. Traditionally, monitoring cutting tool conditions and machine tool health is carried out by operators who perform a manual inspection, which often causes unnecessary stoppages of machine tools and, as a result, costs incurred from lost productivity. However, without a timely inspection of both cutter status and machine tool working conditions, cutter wear or breakage and machine tool malfunction can take place during machining causing significant damage to workpieces. Some researchers have estimated that the amount of machine tool downtime due to these problems is around 6.8% while others put the figure closer to 20%. Therefore, manufacturing costs can be significantly higher than necessary when either cutters are changed before the end of their useful life or after cutter wear and breakage or machine tool malfunction have caused damage to workpieces. Consequently, a real time and automatic inspection of cutting tool status and machine tool health conditions is needed to profoundly address these problems. This project aims to propose a fundamental solution to the challenges faced by current technologies and develop innovative techniques that can autonomously detect cutting tool and machine tool anomalies in machining for advanced manufacturing. This innovative solution will be based on a novel approach known as sensor data modelling and model frequency analysis, which is uniquely developed by the PI's team at Sheffield and has recently found applications in the condition monitoring and fault diagnosis of a wide range of engineering systems and structures. The project will involve a close multi-disciplinary collaboration of ACSE academics, AMRC engineers, and industrial partners. The novel project idea and this unique research collaboration are expected to fundamentally resolve many challenges and produce urgently needed diagnostic technologies for autonomously detecting cutting tool and machine tool anomalies in machining for advanced manufacturing industry in UK.
在先进的制造业中,对高生产率和产生具有更高公差的高性能组成部分的需求不断上升。为了满足这些要求,需要监视切割工具条件和机床健康以提高工件的尺寸准确性,延长切割工具寿命,最大程度地减少机床停机时间并消除废料和重新工作成本。 传统上,监视切割工具条件和机床健康是由执行手动检查的操作员进行的,这通常会导致不必要的机床停止,因此,损失的生产力产生了成本。但是,如果没有及时检查切割机状态和机床工作条件,可以在加工过程中发生切割器磨损或断裂以及机床功能,从而对工件产生重大损害。一些研究人员估计,由于这些问题,机床停机的数量约为6.8%,而另一些则使该数字接近20%。因此,当任何一个切割机在使用寿命结束之前或切割机磨损和断裂或机床功能故障之后更换刀具时,制造成本可能会大大高于必要。因此,需要实时和自动检查切割工具状态和机床健康状况,以深刻解决这些问题。该项目旨在为当前技术面临的挑战提供基本解决方案,并开发创新技术,这些技术可以自主检测用于高级制造的加工中的切割工具和机床异常。这种创新的解决方案将基于一种新型方法,称为传感器数据建模和模型频率分析,该方法是由Sheffield的PI团队独特开发的,最近在调查和故障诊断的各种工程系统和结构中发现了应用。 该项目将涉及ACSE学者,AMRC工程师和工业合作伙伴的近距离学科合作。新颖的项目思想和这种独特的研究合作有望从根本上解决许多挑战,并生产出急需的诊断技术,用于自主检测英国高级制造业的加工中的切割工具和机床异常。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tool Condition Monitoring Based on Nonlinear Output Frequency Response Functions and Multivariate Control Chart
基于非线性输出频率响应函数和多元控制图的工具状态监测
- DOI:10.37965/jdmd.2023.472
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Gui Y
- 通讯作者:Gui Y
Vibration Signal-Based Tool Condition Monitoring Using Regularized Sensor Data Modeling and Model Frequency Analysis
- DOI:10.1109/tim.2023.3343825
- 发表时间:2024
- 期刊:
- 影响因子:5.6
- 作者:Zepeng Liu;Zi-Qiang Lang;Yufei Gui;Yun-Peng Zhu;Hatim Laalej;David Curtis
- 通讯作者:Zepeng Liu;Zi-Qiang Lang;Yufei Gui;Yun-Peng Zhu;Hatim Laalej;David Curtis
Time-Sensor Domain Data Decomposition and Analysis for Fault Diagnosis of Cutting Tools
- DOI:10.1109/icarcv57592.2022.10004293
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Yufei Gui;Z. Lang;Zepeng Liu;Yunpeng Zhu;H. Laalej
- 通讯作者:Yufei Gui;Z. Lang;Zepeng Liu;Yunpeng Zhu;H. Laalej
Online Rotor Systems Condition Monitoring Using Nonlinear Output Frequency Response Functions Under Harmonic Excitations
- DOI:10.1109/tii.2022.3141866
- 发表时间:2022-10-01
- 期刊:
- 影响因子:12.3
- 作者:Zhu, Yun-Peng;Zhao, Yu-Lai;Liu, Yang
- 通讯作者:Liu, Yang
Sensor Data Modeling and Model Frequency Analysis for Detecting Cutting Tool Anomalies in Machining
- DOI:10.1109/tsmc.2022.3218536
- 发表时间:2022-11-10
- 期刊:
- 影响因子:8.7
- 作者:Liu, Zepeng;Lang, Zi-Qiang;Stammers, Jon
- 通讯作者:Stammers, Jon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zi-Qiang Lang其他文献
Digital twin-based anomaly detection for real-time tool condition monitoring in machining
- DOI:
10.1016/j.jmsy.2024.06.004 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Zepeng Liu;Zi-Qiang Lang;Yufei Gui;Yun-Peng Zhu;Hatim Laalej - 通讯作者:
Hatim Laalej
On identification of the controlled plants described by the Hammerstein system
- DOI:
10.1109/9.280761 - 发表时间:
1994-03 - 期刊:
- 影响因子:6.8
- 作者:
Zi-Qiang Lang - 通讯作者:
Zi-Qiang Lang
Zi-Qiang Lang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zi-Qiang Lang', 18)}}的其他基金
Application of Novel Nonlinear Data Modelling and Analysis to the Study of Cervical Impedance Spectroscopy for Preterm Birth Prediction
新型非线性数据建模和分析在宫颈阻抗谱早产预测研究中的应用
- 批准号:
EP/R018480/1 - 财政年份:2018
- 资助金额:
$ 131.67万 - 项目类别:
Research Grant
SYstems Science-based design and manufacturing of DYnamic MATerials and Structures (SYSDYMATS)
系统 基于科学的动态材料和结构设计和制造 (SYSDYMATS)
- 批准号:
EP/R032793/1 - 财政年份:2018
- 资助金额:
$ 131.67万 - 项目类别:
Research Grant
New Generation Damping Technologies
新一代阻尼技术
- 批准号:
EP/F017715/1 - 财政年份:2008
- 资助金额:
$ 131.67万 - 项目类别:
Research Grant
相似国自然基金
面向空时谱遥感影像变化检测的自主感知深度学习模型与方法
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
手术机器人弹性柔索驱动微器械精准位置控制与外力自主检测方法研究
- 批准号:51905405
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于空间关联的GNSS自主完好性监测方法研究
- 批准号:61803037
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
煤矿综掘悬臂式掘进机行走、纠偏及截割精准智能测控原理与方法
- 批准号:51874308
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
面向自主抓取任务的移动机器人视觉感知方法研究
- 批准号:61873077
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Development of a method for detecting traces of biological activity using multi-transition metal stable isotopes
开发使用多过渡金属稳定同位素检测生物活性痕迹的方法
- 批准号:
23K17707 - 财政年份:2023
- 资助金额:
$ 131.67万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Study on a method for detecting changes in the state of biological systems and its application to the diagnosis of fetal dysfunction
生物系统状态变化检测方法及其在胎儿功能障碍诊断中的应用研究
- 批准号:
23K03875 - 财政年份:2023
- 资助金额:
$ 131.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a novel caries dentin disinfection method by application of aPDT combined with caries-detecting solution and xenon light
应用aPDT结合龋齿检测液和氙灯开发新型龋齿牙本质消毒方法
- 批准号:
23K16030 - 财政年份:2023
- 资助金额:
$ 131.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Establishment of a new quantitative evaluation method for detecting concrete defects by automatic scanning based on the principle of radiation scattering attenuation.
基于辐射散射衰减原理建立自动扫描检测混凝土缺陷定量评价新方法。
- 批准号:
23H01556 - 财政年份:2023
- 资助金额:
$ 131.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Serological test for detecting all geographical variances of Trypanosoma cruzi infection
用于检测克氏锥虫感染所有地理差异的血清学检测
- 批准号:
10666966 - 财政年份:2023
- 资助金额:
$ 131.67万 - 项目类别: