Lasers that Learn: AI-enabled intelligent materials processing

会学习的激光器:支持人工智能的智能材料加工

基本信息

  • 批准号:
    EP/T026197/1
  • 负责人:
  • 金额:
    $ 99.11万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Lasers are used for an extremely wide range of manufacturing processes. This is due, in part, to their significant flexibility with respect to parameters such as pulse length, pulse energy, wavelength, and beam size. However, this flexibility comes at a price, namely the significant amount of time that must be dedicated to finding the optimal set of parameters, for each and every manufacturing process or customer specification. The standard practice in industry is the mechanical collection of laser machining data for all parameter combinations, in order to find the optimal combination of parameters. However, this process is both time-consuming and unfocussed, and it can take days or weeks, hence costing unnecessary time and money. Even when the optimal parameters have been determined, small changes, for example in laser power or beam shape, during manufacturing, can result in a final product quality that is below the required standard, once again costing time and money. There will also be instances where the specification is not known in advance due to variability in the manufacturing process. What is needed, therefore, are a series of methodologies for identifying optimal parameters before manufacturing, for providing real-time monitoring and error correction during manufacturing, and for enabling process-control (for example stopping the laser exactly at task completion, or varying the laser power for the final finishing steps).The research field of machine learning has seen some extremely significant developments in recent years, and it is now widely understood to be a catalyst for a fundamental change across almost all manufacturing industries. The objective of this proposal is to develop the technological and human expertise required for the integration of machine learning approaches into the UK laser-based manufacturing industry and the NHS. This proposal therefore seeks to leverage state-of-the-art machine learning techniques for solving well-known problems in laser-based manufacturing and materials processing, resulting in improvements in efficiency, reliability, and precision. The results of this proposal will lead to time and money savings for both the UK laser-based manufacturing industry and the NHS. This proposal will cover the application of neural networks for modelling and optimising of femtosecond laser machining, instantly identifying laser-based manufacturing parameters for any customer specification, automatically compensating for residual cavity effects in fibre lasers, enabling targeted delivery of laser light for psoriasis treatment, and laser welding process enhancement in real-time via multi-sensor data.
激光器用于非常广泛的制造工艺。这部分是由于它们相对于诸如脉冲长度、脉冲能量、波长和光束尺寸的参数的显著灵活性。然而,这种灵活性是有代价的,即必须花费大量的时间来为每个制造过程或客户规格找到最佳参数集。工业中的标准做法是机械收集所有参数组合的激光加工数据,以找到最佳参数组合。然而,这个过程既耗时又无重点,可能需要数天或数周,因此会花费不必要的时间和金钱。即使已经确定了最佳参数,在制造过程中,例如激光功率或光束形状的微小变化也可能导致最终产品质量低于所需标准,再次花费时间和金钱。由于生产工艺的可变性,也会出现质量标准事先未知的情况。因此,需要一系列方法,用于在制造之前识别最佳参数,用于在制造期间提供实时监控和误差校正,以及用于实现过程控制(例如在任务完成时精确地停止激光器,或者在最后的精加工步骤中改变激光器功率)。机器学习的研究领域近年来已经看到了一些非常重要的发展,现在人们普遍认为,它是几乎所有制造业发生根本性变化的催化剂。该提案的目标是开发将机器学习方法整合到英国激光制造业和NHS中所需的技术和人力专业知识。因此,该提案旨在利用最先进的机器学习技术来解决基于激光的制造和材料加工中的众所周知的问题,从而提高效率,可靠性和精度。该提案的结果将为英国激光制造业和NHS节省时间和金钱。该提案将涵盖神经网络在飞秒激光加工建模和优化中的应用,即时识别任何客户规格的基于激光的制造参数,自动补偿光纤激光器中的残余腔效应,实现针对银屑病治疗的激光定向输送,以及激光焊接通过多传感器数据实时增强工艺。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep-Learning-Assisted Focused Ion Beam Nanofabrication.
深度学习辅助聚焦的离子束纳米化。
  • DOI:
    10.1021/acs.nanolett.1c04604
  • 发表时间:
    2022-04-13
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Buchnev O;Grant-Jacob JA;Eason RW;Zheludev NI;Mills B;MacDonald KF
  • 通讯作者:
    MacDonald KF
Predictive visualization of fiber laser cutting topography via deep learning with image inpainting
  • DOI:
    10.2351/7.0000957
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Alex Courtier;M. Praeger;J. Grant-Jacob;Christophe Codemard;Paul Harrison;M. Zervas;B. Mills
  • 通讯作者:
    Alex Courtier;M. Praeger;J. Grant-Jacob;Christophe Codemard;Paul Harrison;M. Zervas;B. Mills
Studying the Topography of Laser Cut Aluminium Using Latent Space Produced by Deep Learning
利用深度学习产生的潜在空间研究激光切割铝的形貌
  • DOI:
    10.5220/0011631400003408
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Courtier A
  • 通讯作者:
    Courtier A
Lensless imaging of pollen grains at three-wavelengths using deep learning
  • DOI:
    10.1088/2515-7620/aba6d1
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Grant-Jacob, James A.;Praeger, Matthew;Mills, Ben
  • 通讯作者:
    Mills, Ben
Predicting the Surface Topography of Stainless Steel Cut by Fibre Laser via Deep Learning
通过深度学习预测光纤激光切割不锈钢的表面形貌
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Mills其他文献

Rutaka footbridge in Rwanda: a low technology deck launch
卢旺达的 Rutaka 人行桥:低技术桥面的推出
Global natural rates in the long run: Postwar macro trends and the market-implied math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si62.svg" display="inline" id="d1e2460" class="math"msupmrowmir/mi/mrowmrowmo∗/mo/mrow/msup/math in 10 advanced economies
长期全球自然利率:战后宏观趋势与市场隐含数学在 10 个发达经济体中的表现
  • DOI:
    10.1016/j.jinteco.2024.103919
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Josh Davis;Cristian Fuenzalida;Leon Huetsch;Benjamin Mills;Alan M. Taylor
  • 通讯作者:
    Alan M. Taylor
The knowledge and beliefs of hypertensive patients attending Katleho District Hospital in Free State province, South Africa, about their illness
南非自由州省卡特莱霍地区医院的高血压患者对其疾病的了解和信念
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Justin B. Mpinda;J. Tumbo;I. Govender;Benjamin Mills
  • 通讯作者:
    Benjamin Mills
Global Natural Rates in the Long Run: Postwar Macro Trends and the Market-Implied R* in 10 Advanced Economies
长期全球自然利率:战后宏观趋势和 10 个发达经济体的市场隐含 R*
  • DOI:
    10.2139/ssrn.4603121
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Josh Davis;C. Fuenzalida;Leon Huetsch;Benjamin Mills;Alan M. Taylor
  • 通讯作者:
    Alan M. Taylor

Benjamin Mills的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Mills', 18)}}的其他基金

NSFGEO-NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
NSFGEO-NERC:灾难之后:大火成岩省火山活动后的神秘排气和延迟恢复
  • 批准号:
    NE/Y00650X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 99.11万
  • 项目类别:
    Research Grant
SIM-EARTH: Simulating the evolution of Earth's environment
SIM-EARTH:模拟地球环境的演变
  • 批准号:
    EP/Y008790/1
  • 财政年份:
    2023
  • 资助金额:
    $ 99.11万
  • 项目类别:
    Research Grant
RIFT-CC: Rifting as a driver of long-term Climate Change
RIFT-CC:裂谷是长期气候变化的驱动因素
  • 批准号:
    NE/X011208/1
  • 财政年份:
    2022
  • 资助金额:
    $ 99.11万
  • 项目类别:
    Research Grant
How did the evolution of plants, microbial symbionts and terrestrial nutrient cycles change Earth's long-term climate?
植物、微生物共生体和陆地养分循环的进化如何改变地球的长期气候?
  • 批准号:
    NE/S009663/1
  • 财政年份:
    2019
  • 资助金额:
    $ 99.11万
  • 项目类别:
    Research Grant
Beam-shaping for Laser-based Additive and Subtractive-manufacturing Techniques (BLAST)
用于基于激光的增材和减材制造技术 (BLAST) 的光束整形
  • 批准号:
    EP/N03368X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 99.11万
  • 项目类别:
    Fellowship

相似海外基金

Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
  • 批准号:
    DE240100201
  • 财政年份:
    2024
  • 资助金额:
    $ 99.11万
  • 项目类别:
    Discovery Early Career Researcher Award
A Cell-Free Toolbox to Anticipate, Learn and Counter Antimicrobial Resistance
预测、学习和对抗抗菌素耐药性的无细胞工具箱
  • 批准号:
    BB/Y005074/1
  • 财政年份:
    2024
  • 资助金额:
    $ 99.11万
  • 项目类别:
    Research Grant
A Cell-Free Toolbox to Anticipate, Learn and Counter Antimicrobial Resistance
预测、学习和对抗抗菌素耐药性的无细胞工具箱
  • 批准号:
    BB/Y005325/1
  • 财政年份:
    2024
  • 资助金额:
    $ 99.11万
  • 项目类别:
    Research Grant
How children learn sentence structures across languages: A language-adaptive scope analysis
儿童如何跨语言学习句子结构:语言自适应范围分析
  • 批准号:
    24K16044
  • 财政年份:
    2024
  • 资助金额:
    $ 99.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New mathematical approaches to learn the equations of life from noisy data
从噪声数据中学习生命方程的新数学方法
  • 批准号:
    DP230100025
  • 财政年份:
    2024
  • 资助金额:
    $ 99.11万
  • 项目类别:
    Discovery Projects
Listen, Learn & Leap: Co-producing Equitable and Sustainable Nature-based Solutions for Climate Resilience in East African Cities
聆听、学习
  • 批准号:
    NE/Z503472/1
  • 财政年份:
    2024
  • 资助金额:
    $ 99.11万
  • 项目类别:
    Research Grant
Play and Learn with Green Bean
与绿豆一起玩耍和学习
  • 批准号:
    10062639
  • 财政年份:
    2023
  • 资助金额:
    $ 99.11万
  • 项目类别:
    Collaborative R&D
Further development of an inclusive, interactive mobile app for young people to learn about energy and CO2.
进一步开发包容性的交互式移动应用程序,供年轻人了解能源和二氧化碳。
  • 批准号:
    10060678
  • 财政年份:
    2023
  • 资助金额:
    $ 99.11万
  • 项目类别:
    Grant for R&D
4th Canadian HIV and Aging symposium: HIV and Aging WELL: WE Live & Learn Together
第四届加拿大艾滋病毒与老龄化研讨会:艾滋病毒与老龄化良好:我们生活
  • 批准号:
    480865
  • 财政年份:
    2023
  • 资助金额:
    $ 99.11万
  • 项目类别:
    Miscellaneous Programs
Investigating how Opportunities to Learn Culturally Responsive Teaching Influence Beginning Elementary Mathematics Teachers’ Effectiveness and Retention
调查文化响应式教学的学习机会如何影响初级数学教师的有效性和保留率
  • 批准号:
    2243168
  • 财政年份:
    2023
  • 资助金额:
    $ 99.11万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了