EnnCore: End-to-End Conceptual Guarding of Neural Architectures

EnnCore:神经架构的端到端概念防护

基本信息

  • 批准号:
    EP/T026995/1
  • 负责人:
  • 金额:
    $ 219.36万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

EnnCore will address a fundamental security problem in neural-based (NB) architectures, allowing system designers to specify and verify a conceptual/behavioral hardcore to the system, which can be used to safeguard NB systems against unanticipated behavior and attacks. It will pioneer the dialogue between contemporary explainable neural models and full-stack neural software verification. We will, therefore, develop methods, algorithms and tools to achieve fully-verifiable intelligent systems, which are explainable, whose correct behavior is guaranteed, and that are robust towards attacks.EnnCore will be validated on three diverse and high-impact application scenarios: (i) securing an AI system for cancer diagnosis (health -- Cancer Research UK, The Christie); (ii) ensuring ethical and legal behavior of a conversational agent (health -- Cancer Research UK, The Christie); and (iii) securing an AI system for demand response (energy -- Urbanchain). The use cases will be co-designed and validated under real-world data conditions with the help of one clinical and one industrial partner.As a result, EnnCore will address a fundamental research problem to ensure the security of neural-enabled components by taking into account its entire lifecycle from development to deployment. Solving this research problem will have a far-reaching impact on areas such as health care, ethically grounded AI and demand response, which heavily depend on secure and trusted software components to meet safety-critical requirements. Therefore, our overall research objective is to have a long-term impact on writing secure and trusted AI-based software components, thus contributing to a shared vision of fully-verifiable software, where underlying NB-based architectures are built with strong symbolic and mathematical guarantees.To achieve this objective, EnnCore will design and validate a full-stack symbolic safeguarding system for NB architectures. This project will advance the state-of-the-art in the development of secure Deep Neural Network (DNN) models by mapping, using and extending explainability properties of existing neuro-symbolic DNN architectures (e.g., Graph Networks, Differentiable Inductive Logic Programming), thus safeguarding them with symbolic verification, abstract interpretation and program synthesis methods. EnnCore will pioneer the multi-disciplinary dialogue between explainable DNNs and formal verification.In particular, EnnCore will deliver safeguarding for safety-critical NB architectures with the following novel properties:(1) Full-stack symbolic software verification: we will develop the first bit-precise and scalable symbolic verification framework to reason over actual implementations of DNNs, thereby providing further guarantees of security properties concerning the underlying hardware and software, which are routinely ignored in existing literature.(2) Explainability / Interpretability: EnnCore will pioneer the integration of knowledge-based and neural explainability methods to support end-users specifying security constraints and diagnosing security risks, in order to provide assurances about its security as NB models evolve. Particular attention will be given to the quantitative and qualitative characterization of semantic-drift phenomena in security scenarios. (3) Scalable: we will systematically combine contemporary symbolic methods for explaining, interpreting and verifying neural representations. In particular, we will develop a neuro-symbolic safeguard framework by linking the structural knowledge-based representation elements to the attentional architecture elements, to achieve scalability and precision in an unprecedented manner. We will also develop new learning techniques for reusing information across different verification runs to reduce formulae size and consistently to improve constraint solving.
encore将解决基于神经系统(NB)架构的基本安全问题,允许系统设计人员指定和验证系统的概念/行为核心,可用于保护NB系统免受意外行为和攻击。它将开创当代可解释神经模型和全栈神经软件验证之间的对话。因此,我们将开发方法、算法和工具来实现完全可验证的智能系统,这些系统是可解释的,其正确行为得到保证,并且对攻击具有鲁棒性。encore将在三个不同的高影响力应用场景中进行验证:(i)确保用于癌症诊断的人工智能系统(健康-英国癌症研究中心,佳士得);(ii)确保对话代理的道德和法律行为(健康——英国癌症研究中心,佳士得);(iii)确保需求响应的人工智能系统(能源—Urbanchain)。在一个临床和一个工业合作伙伴的帮助下,用例将在现实数据条件下共同设计和验证。因此,encore将解决一个基础研究问题,通过考虑神经驱动组件从开发到部署的整个生命周期,确保其安全性。解决这一研究问题将对医疗保健、基于道德的人工智能和需求响应等领域产生深远影响,这些领域严重依赖于安全可靠的软件组件来满足安全关键要求。因此,我们的总体研究目标是对编写安全和可信的基于人工智能的软件组件产生长期影响,从而有助于实现完全可验证软件的共享愿景,其中基于nb的底层架构是用强大的符号和数学保证构建的。为了实现这一目标,encore将为NB架构设计并验证一个全栈符号保护系统。该项目将通过映射,使用和扩展现有神经符号DNN架构(例如,图网络,可微分归纳逻辑规划)的可解释性属性,从而通过符号验证,抽象解释和程序合成方法来保护它们,从而推进安全深度神经网络(DNN)模型开发的最新技术。encore将引领可解释深度神经网络与正式验证之间的多学科对话。特别是,encore将为具有以下新特性的安全关键NB架构提供保障:(1)全栈符号软件验证:我们将开发第一个位精确和可扩展的符号验证框架,以对dnn的实际实现进行推理,从而提供有关底层硬件和软件的安全属性的进一步保证,这在现有文献中通常被忽略。(2)可解释性/可解释性:ncore将率先集成基于知识和神经的可解释性方法,以支持最终用户指定安全约束和诊断安全风险,从而在NB模型发展的同时为其安全性提供保证。将特别注意安全情景中语义漂移现象的定量和定性特征。(3)可扩展性:我们将系统地结合当代符号方法来解释、解释和验证神经表征。特别是,我们将通过将结构化的基于知识的表示元素与注意架构元素联系起来,开发一个神经符号保护框架,以前所未有的方式实现可扩展性和精度。我们还将开发新的学习技术,以便在不同的验证运行中重用信息,以减少公式大小并始终改进约束求解。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single Event Effects Assessment of UltraScale+ MPSoC Systems Under Atmospheric Radiation
大气辐射下 UltraScale MPSoC 系统的单粒子效应评估
Bridging the Gap Between AI and Reality - First International Conference, AISoLA 2023, Crete, Greece, October 23-28, 2023, Proceedings
弥合人工智能与现实之间的差距 - 第一届国际会议,AISoLA 2023,希腊克里特岛,2023 年 10 月 23-28 日,会议记录
  • DOI:
    10.1007/978-3-031-46002-9_4
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bensalem S
  • 通讯作者:
    Bensalem S
Combining BMC and Fuzzing Techniques for Finding Software Vulnerabilities in Concurrent Programs
  • DOI:
    10.1109/access.2022.3223359
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Fatimah Aljaafari;R. Menezes;Edoardo Manino;F. Shmarov;Mustafa M. Mustafa-Mustafa-M.-Mustafa-2170073934;L. Cordeiro
  • 通讯作者:
    Fatimah Aljaafari;R. Menezes;Edoardo Manino;F. Shmarov;Mustafa M. Mustafa-Mustafa-M.-Mustafa-2170073934;L. Cordeiro
Bridging formal methods and machine learning with model checking and global optimisation
  • DOI:
    10.1016/j.jlamp.2023.100941
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Bensalem;Xiaowei Huang;Wenjie Ruan;Qiyi Tang;Changshun Wu;Xingyu Zhao
  • 通讯作者:
    S. Bensalem;Xiaowei Huang;Wenjie Ruan;Qiyi Tang;Changshun Wu;Xingyu Zhao
Weight-based Semantic Testing Approach for Deep Neural Networks
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amany Alshareef;Nicolas Berthier;Sven Schewe;Xiaowei Huang
  • 通讯作者:
    Amany Alshareef;Nicolas Berthier;Sven Schewe;Xiaowei Huang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lucas Cordeiro其他文献

Automated formal verification of stand-alone solar photovoltaic systems
  • DOI:
    10.1016/j.solener.2019.09.093
  • 发表时间:
    2019-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Alessandro Trindade;Lucas Cordeiro
  • 通讯作者:
    Lucas Cordeiro

Lucas Cordeiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

真菌特异的内吞作用相关蛋白End3发挥作用的结构研究
  • 批准号:
    32000859
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
从PBMC-β-END-μ-阿片受体途径探讨华蟾素治疗癌痛的外周机制
  • 批准号:
    81173612
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
  • 批准号:
    30672361
  • 批准年份:
    2006
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF Postdoctoral Fellowship in Biology: Was there a Tropical Forest in North America after the end-Cretaceous Extinction?
美国国家科学基金会生物学博士后奖学金:白垩纪末期灭绝后北美是否存在热带森林?
  • 批准号:
    2305812
  • 财政年份:
    2024
  • 资助金额:
    $ 219.36万
  • 项目类别:
    Fellowship Award
Understanding the implications of pandemic delays for the end of life
了解大流行延迟对生命终结的影响
  • 批准号:
    DP240101775
  • 财政年份:
    2024
  • 资助金额:
    $ 219.36万
  • 项目类别:
    Discovery Projects
品質を保証するEnd-to-Endビッグデータ近似処理技術に関する研究
端到端大数据逼近处理技术研究保证质量
  • 批准号:
    23K24850
  • 财政年份:
    2024
  • 资助金额:
    $ 219.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 219.36万
  • 项目类别:
    Continuing Grant
Clinitouch-360: A digital health platform enabling robust end-to-end care of patients in Primary Care with depression and anxiety
Clinitouch-360:数字健康平台,可为初级保健中的抑郁和焦虑患者提供强大的端到端护理
  • 批准号:
    10098274
  • 财政年份:
    2024
  • 资助金额:
    $ 219.36万
  • 项目类别:
    Collaborative R&D
End-to-End Solar Borehole Business Models and Data Collection to Extend Sustainable Access to Energy and Water in Rural Tanzania
端到端太阳能钻孔商业模式和数据收集,以扩大坦桑尼亚农村地区可持续获取能源和水的机会
  • 批准号:
    10074210
  • 财政年份:
    2024
  • 资助金额:
    $ 219.36万
  • 项目类别:
    Collaborative R&D
CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
  • 批准号:
    2339731
  • 财政年份:
    2024
  • 资助金额:
    $ 219.36万
  • 项目类别:
    Continuing Grant
訪問看護師によるEnd of life discussions標準化プログラムの開発
制定上门护士临终讨论的标准化计划
  • 批准号:
    24K14183
  • 财政年份:
    2024
  • 资助金额:
    $ 219.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332661
  • 财政年份:
    2024
  • 资助金额:
    $ 219.36万
  • 项目类别:
    Standard Grant
Elements: Adaptive End-to-End Parallelism for Distributed Science Workflows
要素:分布式科学工作流程的自适应端到端并行性
  • 批准号:
    2427408
  • 财政年份:
    2024
  • 资助金额:
    $ 219.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了