CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing

职业:用于高效和自适应前端信号处理的射频压电声学微系统

基本信息

  • 批准号:
    2339731
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-09-01 至 2029-08-31
  • 项目状态:
    未结题

项目摘要

This project responds to the escalating demand for advanced radio-frequency front-end (RFFE) signal processing components in mobile devices, driven by the ever-expanding landscape of wireless connectivity. The imperative to integrate more RFFE elements within the confined space and power constraints of handheld devices is underscored by the surge in 5G/6G technology, necessitating compact hardware with low power consumption. Our overarching vision is to simplify RFFE complexity and enable superior transceivers by developing chip-scale functionalities with smaller size, higher efficiency and more tunability. Among RFFE components, piezoelectric acoustic microsystems emerge as a key solution, boasting four orders of magnitude smaller sizes and lower losses than conventional electromagnetic (EM) counterparts. Currently dominating RFFE filter solutions in the sub-6-GHz spectrum, these microsystems hold the potential to revolutionize signal processing if extended into the millimeter-wave (mm-wave) spectrum. Hence, overcoming longstanding challenges related to existing acoustic platforms and device designs in mm-wave spectrum is the primary objective of this proposal. The project's broader impacts encompass societal benefits through innovations in wireless technologies and their applications, alongside educational outreach initiatives aimed at inspiring the next generation of scientists and engineers. Committed to STEM education, the project closely integrates research into undergraduate and graduate curricula, mentoring of students, and K-12 learning modules. The research will be closely integrated with undergraduate-level course of Microwave Engineering and graduate-level course of Microelectromechanical Systems. Dissemination through webinars events ensures wide-reaching impact, and industry collaboration fosters practical applications of research findings in RF acoustics. The technologies enabled by our project have the potential to significantly lower power consumption in the power-hungry RFFE, which presently accounts for approximately 30% of power usage in smartphones, contributing to longer battery life and lower energy consumption toward a low carbon economy.This CAREER project is dedicated to advancing miniature piezoelectric acoustic devices for efficient and adaptive RFFE signal processing, with a specific focus on the challenging mm-wave spectrum. The technical strategy comprises three interrelated research thrusts addressing critical gaps in current technologies: 1) development of mm-wave low-loss acoustic platforms: pioneering low-loss and wideband thin-film lithium niobate (LN) platforms leveraging higher-order Lamb modes to facilitate acoustic transducers and waveguides beyond 30 GHz; 2) RF acoustic traveling-wave signal processing components: designing compact traveling-wave RFFE signal processing elements using patterned sub-wavelength metallic structures and piezoelectric transducers on LN thin films, contributing to the miniaturization of acoustic devices whilst maintaining low loss; 3) adaptive piezoelectric device tuning: investigating an efficient tuning mechanism for adaptive piezoelectric devices, utilizing electrostatically actuated metallic beams near the piezoelectric surface, enhancing device performance, enabling applications in dynamic wireless environments. The proposed compact size and adaptivity of acoustic microsystems may drive further miniaturization of wireless transceiver hardware with lower power budget.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目是为了满足移动的设备对高级射频前端(RFFE)信号处理组件不断增长的需求,而这一需求是由不断扩大的无线连接领域所推动的。5G/6 G技术的激增强调了在手持设备的有限空间和功率限制内集成更多RFFE元件的必要性,这需要具有低功耗的紧凑硬件。我们的总体愿景是通过开发具有更小尺寸、更高效率和更高可调谐性的芯片级功能,简化RFFE复杂性并实现上级收发器。在RFFE组件中,压电声学微系统成为一个关键的解决方案,拥有比传统电磁(EM)对应物小四个数量级的尺寸和更低的损耗。目前,这些微系统在6 GHz以下频谱中占据主导地位,如果扩展到毫米波(mm波)频谱中,这些微系统将有可能彻底改变信号处理。因此,克服与毫米波频谱中现有声学平台和设备设计相关的长期挑战是本提案的主要目标。该项目更广泛的影响包括通过无线技术及其应用的创新带来的社会效益,以及旨在激励下一代科学家和工程师的教育宣传举措。该项目致力于STEM教育,将研究与本科和研究生课程、学生辅导和K-12学习模块紧密结合。本研究将与本科微波工程课程和研究生微机电系统课程紧密结合。通过网络研讨会活动的传播确保了广泛的影响,而行业合作则促进了RF声学研究成果的实际应用。我们的项目所实现的技术有可能显著降低高功耗RFFE的功耗,目前RFFE约占智能手机功耗的30%,有助于延长电池寿命和降低能耗,实现低碳经济。这个CAREER项目致力于推进微型压电声学器件,以实现高效和自适应的RFFE信号处理,特别关注具有挑战性的毫米波频谱。该技术战略包括三个相互关联的研究方向,旨在解决当前技术中的关键差距:1)开发毫米波低损耗声学平台:开创性的低损耗和宽带薄膜锂酸盐(LN)平台,利用高阶兰姆模式促进30 GHz以上的声学换能器和波导; 2)RF声学行波信号处理组件:使用图案化的亚波长金属结构和LN薄膜上的压电换能器设计紧凑的行波RFFE信号处理元件,有助于声学器件的小型化,同时保持低损耗; 3)自适应压电器件调谐:研究自适应压电器件的有效调谐机制,利用压电表面附近的静电致动金属梁,增强器件性能,使其能够在动态无线环境中应用。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruochen Lu其他文献

Frequency Tuning of Suspended Millimeter Wave Lithium Niobate Acoustic Resonators by Ion Beam Assisted Argon Gas Cluster Etching
离子束辅助氩气团簇刻蚀悬式毫米波铌酸锂声波谐振器的频率调谐
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vakhtang Chulukhadze;Jack Kramer;Naveed Ahmed;Omar A. Barrera;Sinwoo Cho;Ruochen Lu
  • 通讯作者:
    Ruochen Lu
Trilayer Periodically Poled Piezoelectric Film Lithium Niobate Resonator
三层周期性极化压电薄膜铌酸锂谐振器
  • DOI:
    10.1109/ius51837.2023.10306831
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jack Kramer;K. Huynh;Ryan Tetro;Lezli Matto;Omar A. Barrera;Vakhtang Chulukhadze;Sinwoo Cho;Dorian P. Luccioni;Luca Colombo;M. Goorsky;Ruochen Lu
  • 通讯作者:
    Ruochen Lu
GHz Low-Loss Acoustic RF Couplers in Lithium Niobate Thin Film
采用铌酸锂薄膜的 GHz 低损耗声学射频耦合器
Low-Loss and Wideband Acoustic Delay Lines
低损耗宽带声学延迟线
Analysis of 5−10 GHz Higher-Order Lamb Acoustic Waves in Thin-Film Scandium Aluminum Nitride
薄膜氮化钪铝中 5−10 GHz 高阶兰姆声波的分析

Ruochen Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于群智信息感知模式的WiFi室内定位系统中Radio Map构建方法
  • 批准号:
    61571162
  • 批准年份:
    2015
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
数据驱动的Multi-Radio MANET通信协议的研究
  • 批准号:
    61370222
  • 批准年份:
    2013
  • 资助金额:
    73.0 万元
  • 项目类别:
    面上项目
Multi-Radio传感器网络通信协议关键技术研究
  • 批准号:
    61070193
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
基于无线光载射频(Radio over Free Space Optics)技术的分布式天线系统关键技术研究
  • 批准号:
    60902038
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于双路光相位调制光学倍频法的毫米波Radio Over Fiber系统研究
  • 批准号:
    60877053
  • 批准年份:
    2008
  • 资助金额:
    42.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Development of Radio Frequency Non-Invasive Nanosecond Pulse Therapeutic Devices
职业:射频非侵入性纳秒脉冲治疗装置的开发
  • 批准号:
    2341047
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
New Generation of High-Performance Radio Frequency Devices
新一代高性能射频器件
  • 批准号:
    DP240101310
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
Radio frequency and data acquisition toolkit for physics experiments
用于物理实验的射频和数据采集工具包
  • 批准号:
    2782194
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
SBIR Phase I: Silicon Carbide Radio Frequency Switches
SBIR 第一阶段:碳化硅射频开关
  • 批准号:
    2334387
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SBIR Phase I: Single-Pulse Radio Frequency Software Suite to Improve Advanced Driver Assistance Systems Safety
SBIR 第一阶段:单脉冲射频软件套件可提高高级驾驶员辅助系统的安全性
  • 批准号:
    2304554
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
FMSG: Eco: Distributed Eco-Manufacturing Using Radio Frequency Heating of Nanomaterials
FMSG:Eco:利用纳米材料射频加热的分布式生态制造
  • 批准号:
    2228861
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Control of proton transfer by radio frequency energy and its application to hydrogen production from organic wastes
射频能量控制质子转移及其在有机废物制氢中的应用
  • 批准号:
    23K18546
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Electromagnetic Physically-Unclonable Functions Generated by Graphene Radio-Frequency Circuits
石墨烯射频电路产生的电磁物理不可克隆功能
  • 批准号:
    2229659
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SBIR Phase I: A Handheld Fine-Grained Radio Frequency IDentification (RFID) Localization System for Retail Automation
SBIR 第一阶段:用于零售自动化的手持式细粒度射频识别 (RFID) 定位系统
  • 批准号:
    2232748
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SWIFT: Advancing Coexistence through a Cross-Layer Design Platform with an Adaptive Frequency-Selective Radio Front-End and Digital Algorithms
SWIFT:通过具有自适应选频无线电前端和数字算法的跨层设计平台促进共存
  • 批准号:
    2229021
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了