Measurement Suite for the Accelerated Design of Advanced, Quantum and Functional Materials

用于加速先进、量子和功能材料设计的测量套件

基本信息

  • 批准号:
    EP/T031441/1
  • 负责人:
  • 金额:
    $ 172.29万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

The modern technological world is underpinned by an incredible array of advanced materials, many of which took many years from their discovery to their eventual application. The first germanium transistor was built in 1947 but the use of silicon -based transistors did not become widespread until the 1960s and the first microprocessors did not appear until the later 1970s, paving the way to the explosion of personal computing, tablets and smart phones that proliferate today. Similar long timelines can be drawn for the liquid crystals that fill our TV screens or the magnetic hard drives that until recently were ubiquitous in every computer. Only recently has flash memory replaced magnetic disks in portable devices, which make use of a purely `quantum mechanical 'property called tunnelling whereby electrons can pass through barriers that in our everyday large scale `classical' world would not be possible. Silicon, which from the viewpoint of quantum mechanics is just about the simplest type of electronic material imaginable, dominates our current world. In silicon the electrons more or less ignore the presence of their fellow electrons, yet there are much more complex and interesting materials involving the collective motion of `correlated' electrons that have the potential to yield much more powerful technologies. In parallel the development of materials for energy creation and storage also have a profound influence on our lives. The appearance of the Sony Walkman personal cassette player in Japan in 1979 was simply because the density of energy stored in a small portable battery made it feasible. Today however, the global crisis in climate change and the need for cleaner and renewable energy sources gives the development of new materials for energy a much more serious and urgent priority. This proposal concerns itself with development of just the types of materials discussed above, materials that in future could form the heart of powerful technologies of wide benefit to society, but currently in the first stages of creation and development. We are concerned among other things with: energy related materials for batteries, fuel cells, clean catalysis (including carbon neutral hydrogen production); the complex electronic properties of strongly correlated electronic materials, novel quantum and topological materials; new magnetic materials and ferroelectric materials for advanced data storage and manipulation. In developing advanced functional materials it is important to know not only their composition, crystalline structure and morphology, but also to understand how small changes in all of these relate to the physical properties that make them both interesting and useful in applications. Material creation can take many forms, from traditional solid state chemical synthesis to thin film deposition techniques where we deposit one layer of atoms at a time and can even create materials not possible in bulk crystalline form. Whatever the route, it is essential to know as quickly as possible after, or even during, synthesis if the properties of this material are the ones that are required (or are interesting in some additional unexpected way). Obtaining this rapid feedback between growth and measurement is essential if one is to progress rapidly in the development of new materials. The focus of this application is to provide the infrastructure that can rigorously examine a wide range of relevant physical properties quickly and in way that can be undertaken by a wide range of people with a variety of expertise. Modern materials research is a truly interdisciplinary pursuit and involves physicists, chemists and materials scientists and engineers all of whom have very different specialist knowledge but who need to easily obtain information on the materials on which they work. Our equipment will allow a range of valuable properties to be measured efficiently, paving the way to future technological applications.
现代技术世界是由一系列令人难以置信的先进材料支撑的,其中许多材料从发现到最终应用需要多年时间。第一个锗晶体管制造于1947年,但硅基晶体管的使用直到20世纪60年代才变得普遍,第一个微处理器直到20世纪70年代后期才出现,为今天激增的个人计算,平板电脑和智能手机的爆炸铺平了道路。类似的长时间表可以被绘制为充满我们的电视屏幕的液晶或直到最近才在每台计算机中无处不在的磁性硬盘驱动器。直到最近,闪存才取代了便携式设备中的磁盘,后者利用了一种称为隧道效应的纯粹“量子力学”性质,电子可以通过这种屏障,而在我们日常的大规模“经典”世界中,这是不可能的。从量子力学的角度来看,硅几乎是可以想象到的最简单的电子材料,它主宰着我们当今的世界。在硅中,电子或多或少忽略了其他电子的存在,但还有更复杂和有趣的材料,涉及“相关”电子的集体运动,这些材料有可能产生更强大的技术。同时,能源创造和储存材料的发展也对我们的生活产生了深远的影响。1979年索尼Walkman个人卡式录音机在日本的出现仅仅是因为小型便携式电池中存储的能量密度使其可行。然而,今天,全球气候变化危机以及对清洁和可再生能源的需求使开发新能源材料成为一个更加严重和紧迫的优先事项。该提案涉及上述材料类型的开发,这些材料未来可能成为对社会广泛有益的强大技术的核心,但目前处于创造和开发的第一阶段。我们关注的领域包括:电池、燃料电池、清洁催化(包括碳中性制氢)的能源相关材料;强关联电子材料的复杂电子性质;新型量子和拓扑材料;用于先进数据存储和操作的新型磁性材料和铁电材料。在开发先进的功能材料时,重要的是不仅要知道它们的组成,晶体结构和形态,还要了解所有这些微小变化与物理性质的关系,使它们在应用中既有趣又有用。材料制造可以有多种形式,从传统的固态化学合成到薄膜沉积技术,在薄膜沉积技术中,我们一次存款一层原子,甚至可以制造不可能以块状晶体形式存在的材料。无论采用哪种途径,在合成之后或甚至在合成过程中,必须尽快了解这种材料的性质是否是所需的性质(或者以某种额外的意想不到的方式感兴趣)。如果要在新材料的开发中取得快速进展,那么在生长和测量之间获得这种快速反馈是必不可少的。该应用程序的重点是提供基础设施,可以快速严格检查各种相关的物理特性,并且可以由具有各种专业知识的各种人员进行。现代材料研究是一个真正的跨学科的追求,涉及物理学家,化学家和材料科学家和工程师,他们都有非常不同的专业知识,但谁需要轻松地获得他们工作的材料的信息。我们的设备将允许有效地测量一系列有价值的特性,为未来的技术应用铺平道路。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced Photoluminescence and Reduced Dimensionality via Vacancy Ordering in a 10H Halide Perovskite.
  • DOI:
    10.1021/acs.inorgchem.2c04433
  • 发表时间:
    2023-02-27
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Liu, Hang;Hafeez, Hassan;Cordes, David B.;Slawin, Alexandra M. Z.;Peters, Gavin;Lee, Stephen L.;Samuel, Ifor D. W.;Morrison, Finlay D.
  • 通讯作者:
    Morrison, Finlay D.
Observation of a molecular muonium polaron and its application to probing magnetic and electronic states
  • DOI:
    10.1103/physrevb.104.064429
  • 发表时间:
    2021-08-17
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Rogers,M.;Prokscha,T.;Cespedes,O.
  • 通讯作者:
    Cespedes,O.
Phase diagram of Ce Sb 2 from magnetostriction and magnetization measurements: Evidence for ferrimagnetic and antiferromagnetic states
磁致伸缩和磁化测量得到的 Ce Sb 2 相图:亚铁磁和反铁磁态的证据
  • DOI:
    10.1103/physrevb.104.205134
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Trainer C
  • 通讯作者:
    Trainer C
Polar Ferromagnet Induced by Fluorine Positioning in Isomeric Layered Copper Halide Perovskites.
  • DOI:
    10.1021/acs.inorgchem.1c03726
  • 发表时间:
    2022-02-21
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Han, Ceng;McNulty, Jason A.;Bradford, Alasdair J.;Slawin, Alexandra M. Z.;Morrison, Finlay D.;Lee, Stephen L.;Lightfoot, Philip
  • 通讯作者:
    Lightfoot, Philip
Spin-orbit driven superconducting proximity effects in Pt/Nb thin films.
  • DOI:
    10.1038/s41467-023-40757-1
  • 发表时间:
    2023-08-21
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Flokstra, Machiel;Stewart, Rhea;Yim, Chi-Ming;Trainer, Christopher;Wahl, Peter;Miller, David;Satchell, Nathan;Burnell, Gavin;Luetkens, Hubertus;Prokscha, Thomas;Suter, Andreas;Morenzoni, Elvezio;Bobkova, Irina V.;Bobkov, Alexander M.;Lee, Stephen
  • 通讯作者:
    Lee, Stephen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Lee其他文献

SolarClique: Detecting Anomalies in Residential Solar Arrays
SolarClique:检测住宅太阳能电池阵列的异常情况
Policing Wage Theft in the Day Labor Market
监管日间劳动力市场的工资盗窃
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephen Lee
  • 通讯作者:
    Stephen Lee
Stability of the vortex lattice in ET superconductors studied by μSR
μSR 研究 ET 超导体中涡旋晶格的稳定性
  • DOI:
    10.1016/s0379-6779(98)00349-x
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Blundell;Stephen Lee;F. Pratt;C. Aegerter;T. Jestädt;B. Lovett;C. Ager;Takahiko Sasaki;V. Laukhin;E. Laukhina;E. Forgan;W. Hayes
  • 通讯作者:
    W. Hayes
Genitogluteal porokeratosis: An unusual clinical presentation
生殖臀汗孔角化症:一种不寻常的临床表现
  • DOI:
    10.1111/j.1440-0960.2011.00784.x
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Sanjeev Kumar;Stephen Lee
  • 通讯作者:
    Stephen Lee
Construction of Genomic Regulatory Encyclopedias: Strategies and Case Studies
基因组监管百科全书的构建:策略和案例研究
  • DOI:
    10.1109/occbio.2009.9
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Lichtenberg;Mohit Alam;Thomas Bitterman;Frank Drews;Klaus H. Ecker;L. Elnitski;S. Evans;Matt Geisler;E. Grotewold;Dazhang Gu;E. Jacox;K. Kurz;Stephen Lee;Xiaoyu Liang;P. Majmudar;Paul Morris;Chase W. Nelson;E. Stockinger;Joshua D. Welch;S. Wyatt;Alper Yilmaz;L. Welch
  • 通讯作者:
    L. Welch

Stephen Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Lee', 18)}}的其他基金

DESC: Type I: Data-driven system-design for sustainable long-lasting distributed infrastructures
DESC:类型 I:数据驱动的系统设计,实现可持续的持久分布式基础设施
  • 批准号:
    2324873
  • 财政年份:
    2023
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Standard Grant
Identifying genomic resources against pests and pathogens in tree genera: a case study in Fraxinus
识别树属害虫和病原体的基因组资源:白蜡树案例研究
  • 批准号:
    BB/L012006/1
  • 财政年份:
    2014
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Research Grant
Generation, Imaging and Control of Novel Coherent Electronic States in Artificial Ferromagnetic-Superconducting Hybrid Metamaterials and Devices
人造铁磁-超导混合超材料和器件中新型相干电子态的生成、成像和控制
  • 批准号:
    EP/J01060X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Research Grant
Complex Intermetallics, New Dimensions: A Synthetic, Structural and Theoretical Approach
复杂金属间化合物,新维度:综合、结构和理论方法
  • 批准号:
    0804223
  • 财政年份:
    2008
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Continuing Grant
Development of AlGaN Biosensor sensitive in physiological saline
开发对生理盐水敏感的AlGaN生物传感器
  • 批准号:
    0756594
  • 财政年份:
    2008
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Continuing Grant
Field Induced Quantum Ordering
场诱导量子排序
  • 批准号:
    EP/E064264/1
  • 财政年份:
    2007
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Research Grant
Advanced Characterisation of Magnetic Recording Media using Neutron Scattering
使用中子散射对磁记录介质进行高级表征
  • 批准号:
    EP/E038514/1
  • 财政年份:
    2007
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Research Grant
Confronting Complexity in Intermetallics: A Synthetic, Structural and Theoretical Approach
面对金属间化合物的复杂性:一种合成、结构和理论方法
  • 批准号:
    0504703
  • 财政年份:
    2005
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Continuing grant
CRC: Multi-dimensional Molecular Metals, Crystal Design, and Superconductivity
CRC:多维分子金属、晶体设计和超导性
  • 批准号:
    0209934
  • 财政年份:
    2002
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Standard Grant
Covalently Cross-Linked Coordination Crystals
共价交联配位晶体
  • 批准号:
    0104267
  • 财政年份:
    2001
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Continuing grant

相似海外基金

UK ELT: The next generation instrumentation suite for the Extremely Large Telescope
英国 ELT:用于超大望远镜的下一代仪器套件
  • 批准号:
    ST/Y005309/1
  • 财政年份:
    2024
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Research Grant
Interoperable applications suite to enhance European identity and document Security and fraud detection (EINSTEIN)
可互操作的应用程序套件可增强欧洲身份和文件安全以及欺诈检测 (EINSTEIN)
  • 批准号:
    10093453
  • 财政年份:
    2024
  • 资助金额:
    $ 172.29万
  • 项目类别:
    EU-Funded
EPSRC Core Capital 2022, Nanomaterials Characterisation Suite (NCS)
EPSRC Core Capital 2022,纳米材料表征套件 (NCS)
  • 批准号:
    EP/X03500X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Research Grant
I-Corps: Analog Layout Design Suite
I-Corps:模拟布局设计套件
  • 批准号:
    2310607
  • 财政年份:
    2023
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of a Nanofabrication Lab Manual Featuring a Suite of Low-Cost Experiments to Enable Hands-On Training at Community and Technical Colleges
合作研究:开发纳米制造实验室手册,其中包含一套低成本实验,可在社区和技术学院进行实践培训
  • 批准号:
    2301138
  • 财政年份:
    2023
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of a Nanofabrication Lab Manual Featuring a Suite of Low-Cost Experiments to Enable Hands-On Training at Community and Technical Colleges
合作研究:开发纳米制造实验室手册,其中包含一套低成本实验,可在社区和技术学院进行实践培训
  • 批准号:
    2301139
  • 财政年份:
    2023
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Standard Grant
A suite of conditional mouse models for secretome labeling
一套用于分泌蛋白组标记的条件小鼠模型
  • 批准号:
    10640784
  • 财政年份:
    2023
  • 资助金额:
    $ 172.29万
  • 项目类别:
Developing a Suite of Targeted Anticancer Drugs
开发一套靶向抗癌药物
  • 批准号:
    10734624
  • 财政年份:
    2023
  • 资助金额:
    $ 172.29万
  • 项目类别:
Collaborative Research: Development of a Nanofabrication Lab Manual Featuring a Suite of Low-Cost Experiments to Enable Hands-On Training at Community and Technical Colleges
合作研究:开发纳米制造实验室手册,其中包含一套低成本实验,可在社区和技术学院进行实践培训
  • 批准号:
    2301137
  • 财政年份:
    2023
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of a Nanofabrication Lab Manual Featuring a Suite of Low-Cost Experiments to Enable Hands-On Training at Community and Technical Colleges
合作研究:开发纳米制造实验室手册,其中包含一套低成本实验,可在社区和技术学院进行实践培训
  • 批准号:
    2301140
  • 财政年份:
    2023
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了