Computing algebraic invariants of symbolic dynamical systems
计算符号动力系统的代数不变量
基本信息
- 批准号:EP/V007459/1
- 负责人:
- 金额:$ 42.9万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Euclidean symmetries are all around us in the natural world. Some of these symmetries are visible to the naked eye, such as the bilateral symmetry of a butterfly's wings. Other symmetries can be viewed via an electron microscope, such as the translation symmetries of a crystal.More subtle to describe are the symmetries of quasicrystals, the existence of which was doubted for much of the last century. Quasicrystals are crystalline structures which do not have the translational symmetry of a normal crystal. Quasicrystals have a hierarchical structure: patterns and structures which appear on small scales are reproduced on larger and larger scales.The first mathematical model of a quasicrystal was discovered by Sir Roger Penrose half a century ago. The Penrose tiling has reflectional symmetry, but it lacks a translational symmetry. A translationally symmetric tiling of two dimensional space must have either three-, four- or six-fold rotational symmetry. But the Penrose tiling has local five-fold rotational symmetry.Penrose's tiling is simply a mathematical model, which is not necessarily guaranteed to exist in the natural world. But in 1982, Daniel Schechtman discovered that pentagonal symmetry actually appears in nature, while studying a rapidly chilled molten mixture of aluminium and manganese under an electron microscope. For his work, he received the Nobel prize in 2011.Since the discovery of the Penrose tilings, mathematicians have discovered many ways to create such arrangements: There are infinitely many mathematical tilings of the plane which do not have translational symmetry. Confined to the kinds of building-blocks provided by nature, it is harder for scientists to create, or discover, these tilings.Two questions arise, which are complementary to one another. The first is, when are two mathematical tilings somehow equivalent, and the second is, which of these mathematical tilings can be realised in the world around us? Answering the first question can guide scientists investigating the second question, for then, in trying to realise a mathematical tiling, they can ignore tilings known to be equivalent to ones that have already been realised.Mathematicians study symmetry using abstract algebraic structures such as symmetry groups. We can characterize the structural properties of a tiling by associating to it algebraic constructions called invariants. If two tilings are equivalent, their invariants are the same. So, an understanding of the algebraic invariants of a tiling leads to some answers to the first question. In this project, we seek to gain a better understanding of some of these invariants, how symmetries manifest in them, and how to compute them, so that we can make progress in classifying mathematical quasicrystals.
欧几里得对称性在自然界中无处不在。其中一些对称性是肉眼可见的,例如蝴蝶翅膀的两侧对称性。其他的对称性可以通过电子显微镜观察到,比如晶体的平移对称性,更微妙的是准晶的对称性,在上个世纪的大部分时间里,准晶的存在都受到怀疑。准晶是不具有正常晶体的平移对称性的晶体结构。准晶具有层次结构:在小尺度上出现的图案和结构在越来越大的尺度上再现。第一个准晶的数学模型是由罗杰·彭罗斯爵士在世纪前发现的。彭罗斯镶嵌具有反射对称性,但缺乏平移对称性。二维空间的旋转对称镶嵌必须具有三重、四重或六重旋转对称。但彭罗斯镶嵌具有局部五重旋转对称性,彭罗斯镶嵌只是一个数学模型,并不一定保证在自然界中存在。但在1982年,丹尼尔·谢赫特曼发现,五边形对称实际上出现在自然界中,同时在电子显微镜下研究快速冷却的铝和锰的熔融混合物。由于他的工作,他在2011年获得了诺贝尔奖。自从彭罗斯镶嵌的发现,数学家们已经发现了许多方法来创建这样的安排:有无限多的数学镶嵌的平面不具有平移对称性。由于受限于自然界提供的建筑材料种类,科学家们很难创造或发现这些瓦片。由此产生了两个相辅相成的问题。第一个问题是,什么时候两个数学镶嵌是等价的,第二个问题是,这些数学镶嵌中的哪一个可以在我们周围的世界中实现?研究第一个问题可以指导科学家研究第二个问题,因为在试图实现数学镶嵌时,他们可以忽略已知与已经实现的镶嵌等价的镶嵌。数学家使用抽象的代数结构(如对称群)来研究对称性。我们可以通过与称为不变量的代数结构相关联来表征平铺的结构特性。如果两个平铺是等价的,则它们的不变量是相同的。因此,理解平铺的代数不变量可以回答第一个问题。在这个项目中,我们试图更好地理解这些不变量中的一些,如何在它们中表现对称性,以及如何计算它们,以便我们可以在分类数学准晶方面取得进展。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How to prove that a sequence is not automatic
- DOI:10.1016/j.exmath.2021.08.001
- 发表时间:2021-04
- 期刊:
- 影响因子:0.7
- 作者:J. Allouche;J. Shallit;R. Yassawi
- 通讯作者:J. Allouche;J. Shallit;R. Yassawi
Torsion-free $S$-adic shifts and their spectrum
- DOI:10.4064/sm221028-6-5
- 发表时间:2022-09
- 期刊:
- 影响因子:0.8
- 作者:'Alvaro Bustos-Gajardo;Neil Mañibo;R. Yassawi
- 通讯作者:'Alvaro Bustos-Gajardo;Neil Mañibo;R. Yassawi
Coboundaries and eigenvalues of finitary S-adic systems
有限 S-adic 系统的余界和特征值
- DOI:10.48550/arxiv.2202.07270
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Berthé V
- 通讯作者:Berthé V
Tame or wild Toeplitz shifts
- DOI:10.1017/etds.2023.58
- 发表时间:2020-10
- 期刊:
- 影响因子:0.9
- 作者:G. Fuhrmann;J. Kellendonk;R. Yassawi
- 通讯作者:G. Fuhrmann;J. Kellendonk;R. Yassawi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reem Yassawi其他文献
An elementary proof of Bridy's theorem
布里迪定理的一个初等证明
- DOI:
10.1016/j.ffa.2025.102621 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:1.200
- 作者:
Eric Rowland;Manon Stipulanti;Reem Yassawi - 通讯作者:
Reem Yassawi
A family of sand automata
- DOI:
10.1016/j.tcs.2014.11.005 - 发表时间:
2015-02-02 - 期刊:
- 影响因子:
- 作者:
Nicholas Faulkner;Reem Yassawi - 通讯作者:
Reem Yassawi
Reem Yassawi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reem Yassawi', 18)}}的其他基金
Computing algebraic invariants of symbolic dynamical systems
计算符号动力系统的代数不变量
- 批准号:
EP/V007459/2 - 财政年份:2022
- 资助金额:
$ 42.9万 - 项目类别:
Research Grant
相似国自然基金
Lienard系统的不变代数曲线、可积性与极限环问题研究
- 批准号:12301200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Knot invariants and algebraic combinatorics
结不变量和代数组合
- 批准号:
23K03108 - 财政年份:2023
- 资助金额:
$ 42.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fusion of enumerative and algebraic geometry and exploration of quasi-geometric invariants
枚举几何与代数几何的融合以及准几何不变量的探索
- 批准号:
23K17298 - 财政年份:2023
- 资助金额:
$ 42.9万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Algebraic Invariants for Phylogenetic Network Inference
系统发育网络推理的代数不变量
- 批准号:
EP/W007134/1 - 财政年份:2022
- 资助金额:
$ 42.9万 - 项目类别:
Research Grant
Computing algebraic invariants of symbolic dynamical systems
计算符号动力系统的代数不变量
- 批准号:
EP/V007459/2 - 财政年份:2022
- 资助金额:
$ 42.9万 - 项目类别:
Research Grant
Research of hierarchy structures of spatial graphs and algebraic invariants
空间图层次结构与代数不变量研究
- 批准号:
19K03500 - 财政年份:2019
- 资助金额:
$ 42.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Derived Categories and Other Invariants of Algebraic Varieties
代数簇的派生范畴和其他不变量
- 批准号:
1902251 - 财政年份:2019
- 资助金额:
$ 42.9万 - 项目类别:
Continuing Grant
Algebraic invariants of spaces with group action
群作用空间的代数不变量
- 批准号:
2274577 - 财政年份:2019
- 资助金额:
$ 42.9万 - 项目类别:
Studentship
Representations and invariants of algebraic groups
代数群的表示和不变量
- 批准号:
2103094 - 财政年份:2018
- 资助金额:
$ 42.9万 - 项目类别:
Studentship
Traces in Algebraic K-theory and Topological Fixed Point Invariants
代数 K 理论和拓扑不动点不变量中的迹
- 批准号:
1810779 - 财政年份:2018
- 资助金额:
$ 42.9万 - 项目类别:
Standard Grant