UKRI Trustworthy Autonomous Systems Hub

UKRI 值得信赖的自治系统中心

基本信息

  • 批准号:
    EP/V00784X/1
  • 负责人:
  • 金额:
    $ 1792.76万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Public opinion on complex scientific topics can have dramatic effects on industrial sectors (e.g. GM crops, fracking, global warming). In order to realise the industrial and societal benefits of Autonomous Systems, they must be trustworthy by design and default, judged both through objective processes of systematic assurance and certification, and via the more subjective lens of users, industry, and the public. To address this and deliver it across the Trustworthy Autonomous Systems (TAS) programme, the UK Research Hub for TAS (TAS-UK) assembles a team that is world renowned for research in understanding the socially embedded nature of technologies. TASK-UK will establish a collaborative platform for the UK to deliver world-leading best practices for the design, regulation and operation of 'socially beneficial' autonomous systems which are both trustworthy in principle, and trusted in practice by individuals, society and government.TAS-UK will work to bring together those within a broader landscape of TAS research, including the TAS nodes, to deliver the fundamental scientific principles that underpin TAS; it will provide a focal point for market and society-led research into TAS; and provide a visible and open door to engage a broad range of end-users, international collaborators and investors. TAS-UK will do this by delivering three key programmes to deliver the overall TAS programme, including the Research Programme, the Advocacy & Engagement Programme, and the Skills Programme. The core of the Research Programme is to amplify and shape TAS research and innovation in the UK, building on existing programmes and linking with the seven TAS nodes to deliver a coherent programme to ensure coverage of the fundamental research issues. The Advocacy & Engagement Programme will create a set of mechanisms for engagement and co-creation with the public, public sector actors, government, the third sector, and industry to help define best practices, assurance processes, and formulate policy. It will engage in cross-sector industry and partner connection and brokering across nodes. The Skills Programme will create a structured pipeline for future leaders in TAS research and innovation with new training programmes and openly available resources for broader upskilling and reskilling in TAS industry.
关于复杂科学话题的公众舆论可能对工业部门(例如转基因作物、水力压裂、全球变暖)产生巨大影响。为了实现自治系统的工业和社会效益,它们必须在设计和默认情况下是值得信赖的,通过系统保证和认证的客观过程以及通过用户、行业和公众的更主观的视角来判断。为了解决这一问题,并在可信赖自治系统(TAS)项目中实现这一目标,英国TAS研究中心(TAS-UK)组建了一个以研究理解技术的社会嵌入性质而闻名世界的团队。TASK-UK将为英国建立一个协作平台,提供世界领先的设计、监管和运营“社会有益”自主系统的最佳实践,这些系统在原则上是值得信赖的,在实践中受到个人、社会和政府的信任。TAS- uk将致力于将包括TAS节点在内的更广泛的TAS研究领域的研究人员聚集在一起,以提供支撑TAS的基本科学原理;它将为市场和社会主导的科技研究提供一个焦点;并为广泛的终端用户、国际合作者和投资者提供一扇可见的、开放的大门。TAS- uk将通过提供三个关键项目来实现这一目标,包括研究项目、宣传与参与项目和技能项目。研究计划的核心是扩大和塑造TAS在英国的研究和创新,建立在现有计划的基础上,并与TAS的七个节点联系起来,提供一个连贯的计划,以确保覆盖基础研究问题。倡导和参与规划将建立一套机制,与公众、公共部门行为体、政府、第三部门和行业共同参与和创造,以帮助确定最佳做法、保证程序和制定政策。它将从事跨行业和跨节点的合作伙伴连接和代理。技能计划将通过新的培训计划和公开资源,为交通运输行业的未来领导者提供结构化的研究和创新渠道,以提高交通运输行业的技能和再培训。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Revisiting Deep Fisher Vectors: Using Fisher Information to Improve Object Classification
重新审视 Deep Fisher 向量:利用 Fisher 信息改进对象分类
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ahmed S
  • 通讯作者:
    Ahmed S
Applicable Formal Methods for Safe Industrial Products - Essays Dedicated to Jan Peleska on the Occasion of His 65th Birthday
适用于安全工业产品的形式化方法 - 献给扬·佩莱斯卡 (Jan Peleska) 65 岁生日之际的论文
  • DOI:
    10.1007/978-3-031-40132-9_1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akintunde M
  • 通讯作者:
    Akintunde M
Computer Safety, Reliability, and Security. SAFECOMP 2023 Workshops - ASSURE, DECSoS, SASSUR, SENSEI, SRToITS, and WAISE, Toulouse, France, September 19, 2023, Proceedings
计算机安全、可靠性和保密性。
  • DOI:
    10.1007/978-3-031-40953-0_28
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abeywickrama D
  • 通讯作者:
    Abeywickrama D
On Specifying for Trustworthiness
  • DOI:
    10.1145/3624699
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    22.7
  • 作者:
    Dhaminda B. Abeywickrama;A. Bennaceur;Greg Chance;Y. Demiris;Anastasia Kordoni;Mark Levine;Luke Moffat-Luke
  • 通讯作者:
    Dhaminda B. Abeywickrama;A. Bennaceur;Greg Chance;Y. Demiris;Anastasia Kordoni;Mark Levine;Luke Moffat-Luke
Resolving Conflicts During Human-Robot Co-Manipulation
解决人机协同操作期间的冲突
  • DOI:
    10.1145/3568162.3576969
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Al-Saadi Z
  • 通讯作者:
    Al-Saadi Z
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarvapali Ramchurn其他文献

Machine learning models for curative and palliative oesophageal cancer treatment pathway prediction
  • DOI:
    10.1016/j.ejso.2023.107152
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Navamayooran Thavanesan;Charlotte Parfitt;Indu Bodala;Zoë Walters;Sarvapali Ramchurn;Timothy Underwood;Ganesh Vigneswaran
  • 通讯作者:
    Ganesh Vigneswaran
Insights from explainable AI in oesophageal cancer team decisions
  • DOI:
    10.1016/j.compbiomed.2024.108978
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Navamayooran Thavanesan;Arya Farahi;Charlotte Parfitt;Zehor Belkhatir;Tayyaba Azim;Elvira Perez Vallejos;Zoë Walters;Sarvapali Ramchurn;Timothy J. Underwood;Ganesh Vigneswaran
  • 通讯作者:
    Ganesh Vigneswaran

Sarvapali Ramchurn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarvapali Ramchurn', 18)}}的其他基金

Smart Solutions Towards Cellular-Connected Unmanned Aerial Vehicles System
蜂窝连接无人机系统的智能解决方案
  • 批准号:
    EP/W004364/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1792.76万
  • 项目类别:
    Research Grant

相似海外基金

TASH - Trustworthy Autonomous Systems for Health
TASH - 值得信赖的健康自治系统
  • 批准号:
    2897687
  • 财政年份:
    2023
  • 资助金额:
    $ 1792.76万
  • 项目类别:
    Studentship
ATRACT: A Trustworthy Robotic Autonomous system to support Casualty Triage
ATRACT:一个值得信赖的机器人自主系统,支持伤员分类
  • 批准号:
    EP/X028631/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1792.76万
  • 项目类别:
    Research Grant
Intelligent control for trustworthy autonomous vehicles
值得信赖的自动驾驶车辆的智能控制
  • 批准号:
    2892782
  • 财政年份:
    2023
  • 资助金额:
    $ 1792.76万
  • 项目类别:
    Studentship
Making Systems Answer: Dialogical Design as a Bridge for Responsibility Gaps in Trustworthy Autonomous Systems
让系统给出答案:对话设计作为可信赖自治系统中责任差距的桥梁
  • 批准号:
    EP/W011654/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1792.76万
  • 项目类别:
    Research Grant
Responsible AI for Long-term Trustworthy Autonomous Systems (RAILS): Integrating Responsible AI and Socio-legal Governance
用于长期可信自治系统(RAILS)的负责任的人工智能:将负责任的人工智能与社会法律治理相结合
  • 批准号:
    EP/W011344/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1792.76万
  • 项目类别:
    Research Grant
Trustworthy Autonomous Intelligent Systems
值得信赖的自主智能系统
  • 批准号:
    RGPIN-2019-06866
  • 财政年份:
    2022
  • 资助金额:
    $ 1792.76万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CPS: Medium: ASTrA: Automated Synthesis for Trustworthy Autonomous Utility Services
合作研究:CPS:媒介:ASTrA:值得信赖的自治公用事业服务的自动合成
  • 批准号:
    2139713
  • 财政年份:
    2022
  • 资助金额:
    $ 1792.76万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: ASTrA: Automated Synthesis for Trustworthy Autonomous Utility Services
合作研究:CPS:媒介:ASTrA:值得信赖的自治公用事业服务的自动合成
  • 批准号:
    2139781
  • 财政年份:
    2022
  • 资助金额:
    $ 1792.76万
  • 项目类别:
    Standard Grant
Assuring Responsibility for Trustworthy Autonomous Systems
确保值得信赖的自治系统的责任
  • 批准号:
    EP/W011239/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1792.76万
  • 项目类别:
    Research Grant
Trustworthy Human-Centric Autonomous Systems
值得信赖的以人为本的自治系统
  • 批准号:
    2750906
  • 财政年份:
    2022
  • 资助金额:
    $ 1792.76万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了