Quantum entanglement in attosecond ionisation

阿秒电离中的量子纠缠

基本信息

  • 批准号:
    EP/V009192/1
  • 负责人:
  • 金额:
    $ 65.64万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Two of the quantum phenomena at the very heart of the foundation of quantum mechanics, as it emerged about 100 years ago, were photoionisation (Einstein's 1921 Nobel prize for the discovery of the law of the photoelectric effect) and later on quantum entanglement, which led to the famous Einstein-Podolsky-Rosen (EPR) paradox and the puzzling concept of 'spooky action at a distance'.The project proposed here joins these two fundamental concepts into a single research direction studying the formation and control of entanglement in photoionisation by ultra-short laser pulses. This theoretical endeavour emerges as very timely due to the recent developments in ultrafast laser technology that have opened the way to the experimental study of the very first few femtoseconds of the motion of electrons triggered by ionisation. A wide range of physical scenarios of photoionisation that previously could not be observed as they evolve in time, have become experimentally accessible to time-resolved spectroscopy performed with the new generation ultrafast light sources at both university laboratories and the major international laser facilities around the world. These scenarios encompass various regimes of the light-matter interaction, from the single- and multi-photon perturbative one to the strong-field non-perturbative one, as well as various statistical properties of the ionising light, from fully coherent to stochastic light pulses. By using quantum information and quantum state tomography approaches, we aim to discover new physical phenomena underpinned by quantum entanglement in ionising many-electron systems, occurring on the attosecond (10^{-18} of a second) time scale. As part of this research, we will study quantum entanglement between the photoelectron and the remaining ion, devise Bell-test experiments with photoelectrons to probe this entanglement and find out about the effect of measurement on the quantum many-electron dynamics. The proposed research programme will apply the world-leading theoretical and computational tools we developed to study the nature of charge migration and other previously unexplored attosecond-scale processes in atoms and molecules, including the building blocks of biomolecules. These tools, originally based on Feynman's diagrammatic approach to quantum mechanical perturbation theory, are significantly extended by us to describe the large-amplitude motion of the ionised electron. As a result of our work, there will emerge the presently lacking picture of the effect of quantum entanglement and quantum measurement in photo-ionised many-body systems. The knowledge gained from this research will lead to a new level of understanding of the first moments in the electronic excitation of matter. Ultimately, this may lead to new ways to control the radiation damage processes, with direct implications on radiobiology and eventually on radiotherapy. For instance, it has been shown that electronic excitation in key molecular building blocks of matter is followed by a universal primary event - sub-femtosecond to few femtosecond migration of electric charge across nanometres. This charge migration is expected to be extremely important for triggering the subsequent nuclear dynamics and therefore ultimately controlling the chemical change in what has become known as "attochemistry".
大约100年前出现的量子力学基础的两个核心量子现象是光电离(爱因斯坦因发现光电效应定律而获得1921年诺贝尔奖)以及后来的量子纠缠,这导致了著名的爱因斯坦-波多尔斯基-罗森(EPR)悖论和令人费解的“幽灵般的作用在一个距离”的概念。这里提出的项目将这两个基本概念结合成一个单一的研究方向,研究的纠缠的形成和控制的光电离超短激光脉冲。由于超快激光技术的最新发展,这一理论努力非常及时地出现,为电离引发的电子运动的最初几个飞秒的实验研究开辟了道路。广泛的光电离物理场景,以前无法观察到,因为它们随着时间的推移,已经成为实验上可访问的时间分辨光谱与新一代超快光源在两个大学实验室和世界各地的主要国际激光设施。这些方案包括各种制度的光-物质相互作用,从单光子和多光子微扰的一个强场非微扰的,以及各种统计特性的电离光,从完全相干的随机光脉冲。通过使用量子信息和量子态层析成像方法,我们的目标是发现电离多电子系统中的量子纠缠所支持的新物理现象,发生在阿秒(10^{-18}秒)的时间尺度上。作为这项研究的一部分,我们将研究光电子和剩余离子之间的量子纠缠,设计光电子的贝尔测试实验来探测这种纠缠,并了解测量对量子多电子动力学的影响。拟议的研究计划将应用我们开发的世界领先的理论和计算工具来研究原子和分子中电荷迁移和其他以前未探索的阿秒尺度过程的性质,包括生物分子的构建模块。这些工具最初是基于Feynman的量子力学微扰理论的图解方法,我们将其扩展到描述电离电子的大振幅运动,从而将出现目前缺乏的光电离多体系统中量子纠缠效应和量子测量的图像。从这项研究中获得的知识将导致对物质电子激发的第一时刻的理解达到一个新的水平。最终,这可能会导致新的方法来控制辐射损伤过程,直接影响放射生物学,并最终对放射治疗。例如,已经表明,在物质的关键分子构建块中的电子激发之后是普遍的初级事件-亚飞秒到几飞秒的电荷跨纳米迁移。预计这种电荷迁移对于触发随后的核动力学并因此最终控制所谓的“原子化”中的化学变化极其重要。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electronic quantum coherence in glycine molecules probed with ultrashort x-ray pulses in real time.
  • DOI:
    10.1126/sciadv.abn6848
  • 发表时间:
    2022-06-03
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
  • 通讯作者:
Advances in modeling attosecond electron dynamics in molecular photoionization
Electronic Quantum Coherence in Glycine Molecules Probed with Ultrashort X-ray Pulses in Real Time
用超短 X 射线脉冲实时探测甘氨酸分子中的电子量子相干性
  • DOI:
    10.3204/pubdb-2022-01680
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Schwickert D
  • 通讯作者:
    Schwickert D
Experimental Demonstration of Attosecond Pump-Probe Spectroscopy with an X-ray Free-Electron Laser
X 射线自由电子激光器阿秒泵浦探针光谱学的实验演示
  • DOI:
    10.48550/arxiv.2401.15250
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guo Zhaoheng
  • 通讯作者:
    Guo Zhaoheng
Quantum coherence in molecular photoionization.
分子光电离中的量子相干性。
  • DOI:
    10.1039/d2cp01562e
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruberti M
  • 通讯作者:
    Ruberti M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Florian Mintert其他文献

Many-body entanglement: Permutations and equivalence classes
多体纠缠:排列和等价类
  • DOI:
    10.1103/physreva.86.052330
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Florian Mintert;Benno Salwey;Andreas Buchleitner
  • 通讯作者:
    Andreas Buchleitner
Continuously Sustained Bose-Einstein Photon Condensate in a Semiconductor Quantum Well Open Microcavity
半导体量子阱开放微腔中连续持续的玻色-爱因斯坦光子凝聚

Florian Mintert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Florian Mintert', 18)}}的其他基金

TheBlinQC
布林QC
  • 批准号:
    EP/R043817/2
  • 财政年份:
    2019
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Research Grant
TheBlinQC
布林QC
  • 批准号:
    EP/R044082/1
  • 财政年份:
    2018
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Research Grant
TheBlinQC
布林QC
  • 批准号:
    EP/R043817/1
  • 财政年份:
    2018
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Research Grant

相似海外基金

CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
  • 批准号:
    2339469
  • 财政年份:
    2024
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Continuing Grant
Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
  • 批准号:
    EP/Z000556/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Research Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
  • 批准号:
    2324300
  • 财政年份:
    2023
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Standard Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
  • 批准号:
    2238096
  • 财政年份:
    2023
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Continuing Grant
Ultrafast Strong-Field Control of Coherence and Entanglement in Atoms and Molecules
原子和分子相干和纠缠的超快强场控制
  • 批准号:
    2309238
  • 财政年份:
    2023
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Standard Grant
The source of quantum advantages: a unified approach to quantum resources of states and processes
量子优势的来源:状态和过程量子资源的统一方法
  • 批准号:
    22KF0067
  • 财政年份:
    2023
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Precise test of the B-meson quantum entanglement based on a new method for event topology determination
基于事件拓扑确定新方法的B介子量子纠缠精确测试
  • 批准号:
    23K03429
  • 财政年份:
    2023
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum entanglement with atoms: from individual pairs to many-body systems
原子的量子纠缠:从个体对到多体系统
  • 批准号:
    FT220100670
  • 财政年份:
    2023
  • 资助金额:
    $ 65.64万
  • 项目类别:
    ARC Future Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了