Next generation in-situ analysis for perovskite photovoltaic development
钙钛矿光伏开发的下一代原位分析
基本信息
- 批准号:EP/V010913/1
- 负责人:
- 金额:$ 57.47万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In 2019, the UK government set a target to achieve a zero net carbon emission economy by 2050 in response to the need for sustainable supply and use of energy. One way to support this target is to develop more efficient, cheaper and accessible photovoltaic (PV) panels, which is already a topic of active research in the UK and worldwide. From all types of PV technologies, scientists are particularly interested in the so-called perovskite PV, as they are unique in the way they generate electricity extremely efficiently and how they can be printed on metal, glass or plastic surfaces cheaply. The drawback is that they are not ready for wide commercial exploitation due to challenges with their stability, toxicity and industrial scale-up. Scientists use many analytical techniques to understand how different materials and processes affect the properties of perovskite PV, but most of the time their analysis is slow and produces limited information. This is because effective analysis requires specialist equipment and expertise often unavailable to industrial and academic development teams. Meanwhile, there have been significant discoveries in using optical spectroscopy techniques to study perovskites and today they can be further developed to quickly analyse materials directly on the production printers. Therefore, the aim of this project is to achieve exactly this and build the first experimental technique that can analyse structure and performance of printed perovskite PV panels directly on the printers making them. This will allow more effective analysis of processing conditions and new materials and as a result faster decision making by scientists and engineers. The methodology of the project will take a full advantage of the recent progress in the spectroscopy of perovskites and the expertise of the principle investigator of the project in the spectroscopy of printed PV. The first stage of the project will be the construction of a new instrument using portable spectrometers and powerful lasers to detect the reflection, scattering and emission of light from perovskite materials. In the second stage, efforts will be focused on the development of the protocols and theoretical models that will allow the prediction of performance and the monitoring of the structural evolution of perovskite materials during printing, without the need for full scale PV device fabrication. These steps will be carried out by a postdoctoral researcher and a PhD student, who will also validate the new methods using established analytical techniques. The final stage of the project will be the application of the new technique in the first of a kind analysis of state-of-the-art perovskite devices, which will produce unique new insights into the properties of perovskite materials. The project will be carried out at Queen Mary University of London for 36 months, where the project team will have access to world class facilities and equipment to complete it successfully. The principle investigator is an internationally leading expert in the spectroscopic analysis of printed photovoltaics with experience and strong links with the UK and international PV research community to allow him to lead the project to completion. The project will include collaborations with two world leading PV development teams, one from industry and one from academia, and a world leading researcher in theoretical modelling of perovskite panels. The collaborations will bring in complementary expertise to the project and guidance for instrument development as potential beneficiaries of the new technique. The expected outcomes of the project include new knowledge for strong scientific publications and patents with the potential for future applications in and a significant impact on the PV and analytical science industries. In the long term, the new analytical technique can be expanded into other electronic technologies due to its unique sensitivity and portability.
2019年,英国政府设定了到2050年实现净零碳排放经济的目标,以应对能源可持续供应和使用的需求。支持这一目标的一种方法是开发更高效、更便宜和更容易获得的光伏(PV)面板,这已经是英国和世界范围内积极研究的主题。在所有类型的光伏技术中,科学家们对所谓的钙钛矿光伏技术特别感兴趣,因为它们的独特之处在于它们发电效率极高,而且它们可以廉价地印刷在金属、玻璃或塑料表面上。缺点是,由于其稳定性、毒性和工业规模方面的挑战,它们还没有准备好广泛的商业开发。科学家们使用许多分析技术来了解不同的材料和工艺如何影响钙钛矿PV的性质,但大多数时候,他们的分析速度很慢,产生的信息有限。这是因为有效的分析需要专业的设备和专业知识,而这些通常是工业和学术开发团队所无法获得的。与此同时,在使用光谱学技术研究钙钛矿方面已经有了重大发现,今天它们可以进一步发展,直接在生产打印机上快速分析材料。因此,这个项目的目标就是实现这一点,并建立第一个实验技术,可以直接在打印机上分析打印的钙钛矿光伏板的结构和性能。这将允许对加工条件和新材料进行更有效的分析,从而使科学家和工程师更快地做出决策。该项目的方法将充分利用钙钛矿光谱学的最新进展以及该项目的主要研究者在印刷PV光谱学方面的专业知识。该项目的第一阶段将是建造一种新的仪器,使用便携式光谱仪和强大的激光器来检测钙钛矿材料的光反射、散射和发射。在第二阶段,努力将集中在协议和理论模型的发展,这将允许在打印过程中预测性能和监测钙钛矿材料的结构演变,而不需要全尺寸的光伏设备制造。这些步骤将由一名博士后研究员和一名博士生进行,他们还将使用现有的分析技术验证新方法。该项目的最后阶段将是将新技术应用于对最先进的钙钛矿设备的首次分析,这将对钙钛矿材料的特性产生独特的新见解。该项目将在伦敦玛丽女王大学进行36个月,项目团队将获得世界一流的设施和设备,以顺利完成。首席研究员是印刷光伏光谱分析方面的国际领先专家,具有丰富的经验,并与英国和国际光伏研究界建立了紧密的联系,使他能够领导该项目完成。该项目将包括与两个世界领先的光伏开发团队合作,一个来自工业界,一个来自学术界,以及一个世界领先的钙钛矿板理论建模研究人员。这些合作将为该项目带来互补的专门知识,并作为新技术的潜在受益者为仪器开发提供指导。该项目的预期成果包括为强大的科学出版物和专利提供新的知识,这些知识未来可能在光伏和分析科学行业中得到应用,并对光伏和分析科学行业产生重大影响。从长远来看,由于其独特的灵敏度和便携性,新的分析技术可以扩展到其他电子技术中。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generating Long-Lived Triplet Excited States in Narrow Bandgap Conjugated Polymers.
- DOI:10.1021/jacs.2c12008
- 发表时间:2023-02-15
- 期刊:
- 影响因子:15
- 作者:Marin-Beloqui, Jose M.;Congrave, Daniel G.;Toolan, Daniel T. W.;Montanaro, Stephanie;Guo, Junjun;Wright, Iain A.;Clarke, Tracey M.;Bronstein, Hugo;Dimitrov, Stoichko D.
- 通讯作者:Dimitrov, Stoichko D.
Triplet Generation Dynamics in Si- and Ge-Bridged Conjugated Copolymers
- DOI:10.1021/acs.jpcc.1c09253
- 发表时间:2022-01-05
- 期刊:
- 影响因子:3.7
- 作者:Hernandez, Federico J.;Fei, Zhuping;Dimitrov, Stoichko D.
- 通讯作者:Dimitrov, Stoichko D.
Single-Atom Iridium on Hematite Photoanodes for Solar Water Splitting: Catalyst or Spectator?
在赤铁矿光阳极上进行太阳能水分裂的单原子虹膜:催化剂还是观众?
- DOI:10.1021/jacs.2c09974
- 发表时间:2023-01-25
- 期刊:
- 影响因子:15
- 作者:Guo, Qian;Zhao, Qi;Crespo-Otero, Rachel;Di Tommaso, Devis;Tang, Junwang;Dimitrov, Stoichko D.;Titirici, Maria-Magdalena;Li, Xuanhua;Sobrido, Ana Belen Jorge
- 通讯作者:Sobrido, Ana Belen Jorge
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stoichko Dimitrov其他文献
Photoelectrochemical activation of peroxymonosulfate using Sn-doped α-Fesub2/subOsub3/sub thin film for degradation of anti-inflammatory pharmaceutical drug
利用锡掺杂的α-Fe₂O₃薄膜光电化学活化过一硫酸盐用于降解抗炎药物
- DOI:
10.1016/j.jphotochem.2023.115126 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:4.700
- 作者:
Manel Machreki;Georgi Tyuliev;Dušan Žigon;Qian Guo;Takwa Chouki;Ana Belén Jorge Sobrido;Stoichko Dimitrov;Saim Emin - 通讯作者:
Saim Emin
Balancing PEDOT:PSS conductivity for optimal power output of p-n junction based ZnO piezoelectric nanogenerator
平衡 PEDOT:PSS 导电性以实现基于 p-n 结的 ZnO 压电纳米发电机的最佳功率输出
- DOI:
10.1016/j.jallcom.2024.177086 - 发表时间:
2025-01-05 - 期刊:
- 影响因子:6.300
- 作者:
Yuan Zhang;Qinrong He;Gengyu Tian;Xuan Li;Chongyang Zeng;Peng Ren;Isaac Abrahams;Emiliano Bilotti;Stoichko Dimitrov;Ana Jorge Sobrido;Joe Briscoe - 通讯作者:
Joe Briscoe
Stoichko Dimitrov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
- 批准号:82371660
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
二次谐波非线性光学显微成像用于前列腺癌的诊断及药物疗效初探
- 批准号:30470495
- 批准年份:2004
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Design and synthesis of a next generation glycobiology toolbox for cell surface labeling
用于细胞表面标记的下一代糖生物学工具箱的设计和合成
- 批准号:
10699270 - 财政年份:2023
- 资助金额:
$ 57.47万 - 项目类别:
Next-generation optical nanoprobes: From quantum biosensing to cellular monitoring
下一代光学纳米探针:从量子生物传感到细胞监测
- 批准号:
10622691 - 财政年份:2023
- 资助金额:
$ 57.47万 - 项目类别:
Ameloblast Differentiation and Amelogenesis: Next-Generation Models to Define Key Mechanisms and Factors Involved in Biological Enamel Formation
成釉细胞分化和成釉细胞:定义生物牙釉质形成涉及的关键机制和因素的下一代模型
- 批准号:
10874800 - 财政年份:2023
- 资助金额:
$ 57.47万 - 项目类别:
Biocarpet: The Next Generation Endovascular Device for Peripheral Arterial Disease
Biocarpet:治疗外周动脉疾病的下一代血管内装置
- 批准号:
10744597 - 财政年份:2023
- 资助金额:
$ 57.47万 - 项目类别:
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 57.47万 - 项目类别:
Next-generation T cell therapy: SMARTER T cells for enhanced and durable anti-tumor immunity
下一代 T 细胞疗法:SMARTER T 细胞可增强且持久的抗肿瘤免疫力
- 批准号:
10644940 - 财政年份:2023
- 资助金额:
$ 57.47万 - 项目类别:
Next generation gene therapy for refractory pain
治疗顽固性疼痛的下一代基因疗法
- 批准号:
10366881 - 财政年份:2022
- 资助金额:
$ 57.47万 - 项目类别:
Developing Next-Generation Physiology approaches for human gut microbiome research
开发用于人类肠道微生物组研究的下一代生理学方法
- 批准号:
10678951 - 财政年份:2022
- 资助金额:
$ 57.47万 - 项目类别:
Next Generation Gene Therapy for Refractory Pain
治疗难治性疼痛的下一代基因疗法
- 批准号:
10553126 - 财政年份:2022
- 资助金额:
$ 57.47万 - 项目类别:
U.S. Culture Collection Network 2.0: The Next Generation Research Coordination Network for Ex Situ Microbial Germplasm Collections.
美国培养物保藏网络 2.0:异地微生物种质保藏的下一代研究协调网络。
- 批准号:
2124633 - 财政年份:2022
- 资助金额:
$ 57.47万 - 项目类别:
Continuing Grant