Perfecting Halide Perovskites: From Precursor Ink Chemistry to Defect Control

完善卤化物钙钛矿:从前体油墨化学到缺陷控制

基本信息

  • 批准号:
    EP/V011197/1
  • 负责人:
  • 金额:
    $ 216.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Halide perovskites are exceptionally promising materials for optoelectronic applications, and have already been incorporated into efficient photovoltaic devices, light-emitting diodes and lasers. However, despite the skyrocketing efficiencies of perovskite-based devices, there is insufficient understanding of the fundamental processes governing crystallisation and defect formation in perovskite-thin films.This project involves research at the intersection of chemistry, solid-state physics, and materials science, geared towards achieving the following goals: 1) developing a fundamental understanding of the colloidal chemistry, and solvent-solute interactions of perovskite precursor inks, 2) elucidating the mechanisms of nucleation, crystallisation and defect formation of thin-films, 3) developing methods to reduce defect formation and mitigate its effects, and 4)the development of stable and efficient photovoltaic devices and light-emitting diodes.Halide perovskites are a synthetic sub-category of perovskite materials which have generated much interest due to their remarkable optoelectronic properties (i.e. broad absorption over the visible spectrum, long carrier diffusion lengths, ambipolar transport, high charge-carrier mobilities etc.) and the ability to produce high-quality material through facile, solution-based processing. In just under a decade, perovskite-based optoelectronics have achieved certified photovoltaic power conversion efficiencies (PCEs) exceeding 25% on a labscale, surpassing all other competing emerging photovoltaic technologies and approaching the performances of mature thin-film technologies. In perovskite optoelectronics research, while efficiency records are regularly broken, there is a lack of detailed understanding of the fundamental processes which govern crystallisation and defect formation in perovskite thin films. This is of paramount importance as, for the same composition material, different crystallisation strategies have been shown to produce films with significantly different optoelectronic properties, defect concentrations and even stability. In the absence of a firm grasp of the mechanisms of crystallisation and defect formation, the various interventions which have been applied to control perovskite crystallisation and passivate electronic and structural defects have been largely carried out through a trial and error, top-down approach. The proposed research aims to carry out a bottom-up investigation which yields a fundamental understanding of the perovskite crystallisation process, and hence provides the ability to control, optimise and tailor the optoelectronic properties of perovskite thin-films. Further, this will allow for minimising structural and electronic defects, having important implications, not just for improving both the performance and stability of perovskite photovoltaics, but for all perovskite-based optoelectronics. This project aims to develop an understanding the chemistry of the perovskite precursor solutions, map the conversion processes from precursor solution to crystal grains, and identify how manipulating the chemistry of the precursor solution, grain boundaries and interfaces affects the nature and concentration of the defects, and the chemical composition and optoelectronic properties of perovskite thin-films. An important aspect of this approach is starting on a fundamental microscopic level and then translating the understanding of the relevant processes into macroscopic properties. The ability to understand and control these material systems will not only lead to significant improvements in the performance of perovskite optoelectronic devices, but also allow for rational design of new solvent systems, and new approaches to controlling the crystallisation of halide perovskite materials.
卤化物钙钛矿是非常有前途的光电应用材料,并已被纳入有效的光伏器件,发光二极管和激光器。然而,尽管钙钛矿基器件的效率飙升,但对钙钛矿薄膜中结晶和缺陷形成的基本过程的理解还不够。该项目涉及化学,固态物理和材料科学的交叉研究,旨在实现以下目标:1)发展对钙钛矿前体油墨的胶体化学和溶剂-溶质相互作用的基本理解,2)阐明薄膜的成核、结晶和缺陷形成的机制,3)开发减少缺陷形成和减轻其影响的方法,以及4)开发稳定和高效的光伏器件和发光二极管。卤化物钙钛矿是钙钛矿材料的一个合成子类,由于其显著的光电性能而引起了人们的极大兴趣(即,在可见光谱上的宽吸收、长载流子扩散长度、双极传输、高电荷载流子迁移率等)以及通过简单的、基于溶液的加工生产高质量材料的能力。在不到十年的时间里,基于钙钛矿的光电子器件在实验室规模上实现了超过25%的认证光伏功率转换效率(PCE),超过了所有其他竞争性新兴光伏技术,并接近成熟薄膜技术的性能。在钙钛矿光电子学研究中,虽然效率记录经常被打破,但对钙钛矿薄膜中结晶和缺陷形成的基本过程缺乏详细的了解。这是至关重要的,因为对于相同的组成材料,不同的结晶策略已被证明产生具有显著不同的光电性能,缺陷浓度甚至稳定性的膜。在缺乏对结晶和缺陷形成机制的牢固把握的情况下,已经应用于控制钙钛矿结晶和钝化电子和结构缺陷的各种干预措施主要是通过试错、自上而下的方法进行的。拟议的研究旨在进行自下而上的研究,从而对钙钛矿结晶过程有一个基本的了解,从而提供控制,优化和定制钙钛矿薄膜光电特性的能力。此外,这将允许最小化结构和电子缺陷,不仅对改善钙钛矿光电子器件的性能和稳定性,而且对所有基于钙钛矿的光电子器件都具有重要意义。该项目旨在了解钙钛矿前体溶液的化学性质,绘制从前体溶液到晶粒的转化过程,并确定如何操纵前体溶液,晶界和界面的化学性质影响缺陷的性质和浓度,以及钙钛矿薄膜的化学组成和光电特性。这种方法的一个重要方面是从基本的微观水平开始,然后将对相关过程的理解转化为宏观性质。理解和控制这些材料体系的能力不仅会导致钙钛矿光电器件性能的显著改善,而且还允许合理设计新的溶剂体系,以及控制卤化物钙钛矿材料结晶的新方法。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Utilizing Nonpolar Organic Solvents for the Deposition of Metal-Halide Perovskite Films and the Realization of Organic Semiconductor/Perovskite Composite Photovoltaics.
  • DOI:
    10.1021/acsenergylett.2c00120
  • 发表时间:
    2022-04-08
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Noel, Nakita K.;Wenger, Bernard;Habisreutinger, Severin N.;Snaith, Henry J.
  • 通讯作者:
    Snaith, Henry J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nakita Noel其他文献

Nakita Noel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
  • 批准号:
    MR/Y011686/1
  • 财政年份:
    2025
  • 资助金额:
    $ 216.72万
  • 项目类别:
    Fellowship
Understanding the electronic structure landscape in wide band gap metal halide perovskites
了解宽带隙金属卤化物钙钛矿的电子结构景观
  • 批准号:
    EP/X039285/1
  • 财政年份:
    2024
  • 资助金额:
    $ 216.72万
  • 项目类别:
    Research Grant
GreenPerovs: Green, Efficient, and Stable Halide Perovskites for Heterogeneous Photocatalysis
GreenPerovs:用于多相光催化的绿色、高效、稳定的卤化物钙钛矿
  • 批准号:
    EP/Y029291/1
  • 财政年份:
    2024
  • 资助金额:
    $ 216.72万
  • 项目类别:
    Fellowship
CAREER: Towards room-temperature quantum simulators enabled by halide perovskites
职业:迈向由卤化物钙钛矿实现的室温量子模拟器
  • 批准号:
    2414131
  • 财政年份:
    2024
  • 资助金额:
    $ 216.72万
  • 项目类别:
    Continuing Grant
Charge Transport and Carrier-Phonon Interactions in Soft Lattice Metal Halide Perovskites
软晶格金属卤化物钙钛矿中的电荷传输和载流子-声子相互作用
  • 批准号:
    2324943
  • 财政年份:
    2023
  • 资助金额:
    $ 216.72万
  • 项目类别:
    Standard Grant
Optoelectronic properties of metal halide perovskites with varying dimensionality
不同维度金属卤化物钙钛矿的光电特性
  • 批准号:
    2889171
  • 财政年份:
    2023
  • 资助金额:
    $ 216.72万
  • 项目类别:
    Studentship
Triple Halide Ultrawide Bandgap Metal Halide Perovskites
三卤化物超宽禁带金属卤化物钙钛矿
  • 批准号:
    2245435
  • 财政年份:
    2023
  • 资助金额:
    $ 216.72万
  • 项目类别:
    Continuing Grant
Understanding highly mobile excitons in halide perovskites
了解卤化物钙钛矿中的高移动激子
  • 批准号:
    2209884
  • 财政年份:
    2022
  • 资助金额:
    $ 216.72万
  • 项目类别:
    Continuing Grant
Exploring Material Dimensionality in Cesium Lead-Halide Perovskites Using SSNMR and NQR Spectroscopy
使用 SSNMR 和 NQR 光谱探索铯铅卤化物钙钛矿的材料维度
  • 批准号:
    573092-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 216.72万
  • 项目类别:
    University Undergraduate Student Research Awards
Real space-time observation of electron-phonon coupling in lead halide perovskites by ultrafast nanoscopy
超快纳米显微镜对卤化铅钙钛矿电子声子耦合的实时时空观测
  • 批准号:
    22K14653
  • 财政年份:
    2022
  • 资助金额:
    $ 216.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了