Under the skin of polishing - from nano to macro

皮肤下的抛光——从纳米到宏观

基本信息

  • 批准号:
    EP/V029304/1
  • 负责人:
  • 金额:
    $ 66.52万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

This proposal brings together experts in complementary areas of physics, chemistry and engineering, to explore new science with potentially high practical impact.Processing glass and similar materials to precise, polished surfaces is the "hidden gem" behind many products and services we take for granted - both in precise control of the distribution of light (e.g. anti-glare headlamps), or to focus light in imaging. From medical X-ray cameras to satellite optics, precise, smooth surfaces are required, with surface errors but small fractions of a micron (maybe 1/1000 the width of a human hair), with roughness down to a few atoms. Also, highly localised defects can scatter light, reducing contrast, or lead to component failure in high-power laser applications. Polishing 'rubs' surfaces to remove damage from prior hard-grinding, and then controls surface-contours to meet design requirements. Historically, these steps were performed by highly-skilled craftspeople, who are in ever-shorter supply as they retire. Modern CNC machines now take much of the drudgery out, but even so, multiple polish/measure cycles are needed to reach refined levels of quality. The basic reason is that, after some 400 years of optical manufacture, the underlying 'rubbing' processes are still far from perfectly understood. A practical setup typically deploys some kind of rotating tool, fed with a liquid slurry containing a fine abrasive powder. The tool moves over a glass surface, often with complex contours. Details of fluid-flow at the microscopic level between tool and glass are complex, and control local interactions of individual abrasive particles with the glass. Then, at the atomic ('nano') scale, chemical-attack, plastic-flow and brittle-fracture perform a complex 'dance', controlling how material is removed.Prior work at various institutions has tended to focus on fluid flow OR nano-scale removal, representing distinct disciplines. But, modelling fluid-flow alone (computational fluid dynamics) omits chemistry and fracture-mechanics. Conversely, nano-scale molecular dynamics omits important fluid-flow issues. What nobody has done before, as we propose, is to combine these distinct approaches, supported by real-time process-monitoring data, and high-performance computing. Then CFD can provide molecular dynamics with predicted particle-trajectories, and particles in CFD can be treated as chemically-reactive rather than inert. The models can then by brought together in a unified large-scale and predictive macro model of removal-processes. Often, scientific breakthroughs arise at the INTERFACES between disciplines - precisely where this proposal focusses.This model will be further developed through polishing trials of complete surfaces, drawing on real-time process-data to predict removal, and post-process measurement of what material has been removed where, plus any defects. This promises to reveal how a surface progresses in real-time, when it is smothered with slurry and invisible to direct inspection. Processes can then be tuned 'on the fly' to keep removal on-target, and improve accuracy of the result. Our aim is then to reduce the number of process cycles required, and give insight into why defects arise and how to control them. In implementing the above, the mathematical and computer models developed at nano, micro and macro scales will describe fundamental aspects of molecules and fluids. This will be generally applicable, including different materials and abrasives. Another important application arises where the methods could be transformative - processes underlying materials wearing in mechanical systems (bearings, slide-ways, human joint-implants etc). So, what starts out as fundamental research into "intentional wear" in processes such as polishing, promises to have a profoundly significant impact on our understanding and control of "incidental wear" in things that rub - and wear-out - in everyday life!
该项目汇集了物理、化学和工程领域的专家,共同探索具有潜在重大实践影响的新科学。将玻璃和类似材料加工成精确的抛光表面是我们认为理所当然的许多产品和服务背后的“隐藏宝石”-无论是精确控制光分布(例如防眩光前照灯),还是在成像中聚焦光线。从医用X射线照相机到卫星光学器件,都需要精确、光滑的表面,表面误差只有几分之一微米(可能是人类头发宽度的1/1000),粗糙度低至几个原子。此外,高度局部化的缺陷会散射光,降低对比度,或导致高功率激光应用中的组件故障。抛光“摩擦”表面以去除先前硬磨造成的损伤,然后控制表面轮廓以满足设计要求。从历史上看,这些步骤是由高技能的工匠完成的,他们退休后的供应越来越少。现代CNC机床现在可以消除许多繁琐的工作,但即使如此,也需要多次抛光/测量循环才能达到精细的质量水平。基本原因是,经过400年的光学制造,基本的“摩擦”过程仍然远远没有完全理解。一个实际的设置通常部署某种旋转工具,与液体浆料含有细磨料粉末进料。该工具在玻璃表面上移动,通常具有复杂的轮廓。在工具和玻璃之间的微观水平上的流体流动的细节是复杂的,并且控制单个磨料颗粒与玻璃的局部相互作用。然后,在原子(“纳米”)尺度上,化学侵蚀、塑性流动和脆性断裂进行复杂的“舞蹈”,控制材料的去除方式。各机构先前的工作往往侧重于流体流动或纳米尺度的去除,代表不同的学科。但是,单独建模流体流动(计算流体动力学)忽略了化学和物理力学。相反,纳米尺度的分子动力学忽略了重要的流体流动问题。正如我们所建议的,以前没有人做过的是将这些不同的方法结合起来,由实时过程监控数据和高性能计算支持。然后,CFD可以提供分子动力学预测粒子轨迹,并且CFD中的粒子可以被视为化学反应性而不是惰性。然后,这些模型可以汇集在一个统一的大规模和预测性的宏观模型的去除过程。通常,科学突破出现在学科之间的界面上,这正是本提案所关注的。通过完整表面的抛光试验,利用实时工艺数据来预测去除,以及对在何处去除的材料以及任何缺陷进行后处理测量,将进一步开发该模型。这有望揭示表面如何实时进展,当它被泥浆覆盖并且无法直接检查时。然后,可以“动态”调整过程,以保持去除目标,并提高结果的准确性。我们的目标是减少所需的工艺周期,并深入了解缺陷产生的原因以及如何控制它们。在实现上述内容时,在纳米、微观和宏观尺度上开发的数学和计算机模型将描述分子和流体的基本方面。这将是普遍适用的,包括不同的材料和磨料。另一个重要的应用是这些方法可能是变革性的-机械系统(轴承,滑道,人体关节植入物等)中材料磨损的基础过程。因此,对抛光等过程中的“故意磨损”进行基础研究,有望对我们理解和控制日常生活中摩擦和磨损的“偶然磨损”产生深远的影响!

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
X-ray luminescence and characteristics of potassium-doped cesium iodide film
  • DOI:
    10.1016/j.optmat.2024.115021
  • 发表时间:
    2024-02-05
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Wu,Hsing-Yu;Shen,Li -Siang;Hsu,Jin-Cherng
  • 通讯作者:
    Hsu,Jin-Cherng
Bridging the Divide Between Iterative Optical Polishing and Automation
  • DOI:
    10.1007/s41871-023-00197-3
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Walker;J. I. Ahuir-Torres;Yasemin Akar;Paul A. Bingham;Xun Chen;Michal Darowski;O. Fähnle;Philippe Gambron;Frankie F. Jackson;Hongyu Li;Luke Mason;Rakesh Mishra;Abdullah Shahjalal;Guoyu Yu
  • 通讯作者:
    David Walker;J. I. Ahuir-Torres;Yasemin Akar;Paul A. Bingham;Xun Chen;Michal Darowski;O. Fähnle;Philippe Gambron;Frankie F. Jackson;Hongyu Li;Luke Mason;Rakesh Mishra;Abdullah Shahjalal;Guoyu Yu
Investigation of surface imperfection in freeform optics with high-order XY polynomial design
Towards Data-Driven Material Removal Rate Estimation in Bonnet Polishing
Sub-aperture polishing of glass using precessed bonnets in non-Newtonian fluids
在非牛顿流体中使用加工后的阀盖对玻璃进行亚孔径抛光
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li, Y
  • 通讯作者:
    Li, Y
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Walker其他文献

Interaction Mining: the new Frontier of Call Center Analytics
交互挖掘:呼叫中心分析的新前沿
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Pallotta;Rodolfo Delmonte;Lammert Vrieling;David Walker
  • 通讯作者:
    David Walker
Cladistic analysis of anuran POMC sequences
无尾目 POMC 序列的分支分析
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    3
  • 作者:
    J. Alrubaian;P. Danielson;David Walker;R. Dores
  • 通讯作者:
    R. Dores
Surgical interventions for the early management of Bell's palsy.
贝尔麻痹早期治疗的手术干预。
  • DOI:
    10.1002/14651858.cd007468.pub2
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kerrie McAllister;David Walker;P. Donnan;Iain R. C. Swan
  • 通讯作者:
    Iain R. C. Swan
The Missing Magmas of MOR: Insights From Phase Equilibrium Experiments on Plagioclase Ultraphyric Basalts
MOR 缺失的岩浆:斜长石超火玄武岩相平衡实验的见解
  • DOI:
    10.1029/2021gc009943
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    G. Ustunisik;R. Nielsen;David Walker
  • 通讯作者:
    David Walker
ガルゲンメンライン考――グリンメルスハウゼンと近世ドイツの植物幻想
关于 Gargenmenlein 的思考:格里梅尔斯豪森和早期现代德国植物幻想
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anges Spiquel;Anne Prouteau;Sophie Bastien;Mino Hirosh,Pierre-Louis Rey;Philippe Vanney;Marie-Therese Blondeau;Eve Morisi;David Walker;Raymond-Gay Crosier;Hirsoyuki Takatsuka;Harutoshi Inada;Maurice Weyembergh;Helene Ruffat;Gay Basset;Hiroshi MINO;吉田孝夫
  • 通讯作者:
    吉田孝夫

David Walker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Walker', 18)}}的其他基金

A National Electron Diffraction Facility for Nanomaterial Structural Studies
用于纳米材料结构研究的国家电子衍射装置
  • 批准号:
    EP/X014606/1
  • 财政年份:
    2023
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Research Grant
NeTS: Medium: Foundations and Applications of Modular Verification of Networks
NeTS:媒介:网络模块化验证的基础和应用
  • 批准号:
    2312539
  • 财政年份:
    2023
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Continuing Grant
IMR: MT: Tools for Programming Distributed Data-plane Measurements
IMR:MT:分布式数据平面测量编程工具
  • 批准号:
    2223515
  • 财政年份:
    2022
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Specifying and Verifying Network-wide Properties of Dynamic Data Planes
合作研究:FMitF:第一轨:指定和验证动态数据平面的网络范围属性
  • 批准号:
    2219862
  • 财政年份:
    2022
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Network Configuration Synthesis: A Path to Practical Deployment
NeTS:媒介:协作研究:网络配置综合:实际部署之路
  • 批准号:
    1703493
  • 财政年份:
    2017
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Continuing Grant
Optimised polishing media - a new approach
优化的抛光介质 - 一种新方法
  • 批准号:
    ST/P003648/1
  • 财政年份:
    2017
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Research Grant
Novel Mathematical Techniques for Advanced Tool-paths to Transform High-value Optical Fabrication
用于先进刀具路径的新颖数学技术,以改变高价值光学制造
  • 批准号:
    ST/L001950/2
  • 财政年份:
    2016
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Research Grant
Novel Mathematical Techniques for Advanced Tool-paths to Transform High-value Optical Fabrication
用于先进刀具路径的新颖数学技术,以改变高价值光学制造
  • 批准号:
    ST/L001950/1
  • 财政年份:
    2014
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Research Grant
TC: Large: Collaborative Research: High-Level Language Support for Trustworthy Networks
TC:大型:协作研究:对可信赖网络的高级语言支持
  • 批准号:
    1111520
  • 财政年份:
    2011
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Standard Grant
SHF:Small:Language Support for Ad Hoc Data Processing
SHF:Small:对即席数据处理的语言支持
  • 批准号:
    1016937
  • 财政年份:
    2010
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Continuing Grant

相似国自然基金

羊驼酪氨酸酶相关蛋白1基因及其功能的研究
  • 批准号:
    30671512
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Studentship
An Integrated Model of Contextual Safety, Social Safety, and Social Vigilance as Psychosocial Contributors to Cardiovascular Disease
情境安全、社会安全和社会警惕作为心血管疾病社会心理因素的综合模型
  • 批准号:
    10749134
  • 财政年份:
    2024
  • 资助金额:
    $ 66.52万
  • 项目类别:
Nano-structured RC Networks - A Pathway To Artificial Skin
纳米结构 RC 网络 - 人造皮肤的途径
  • 批准号:
    EP/Y002172/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Research Grant
CICI: TCR: Transitioning Differentially Private Federated Learning to Enable Collaborative, Intelligent, Fair Skin Disease Diagnostics on Medical Imaging Cyberinfrastructure
CICI:TCR:转变差异化私有联合学习,以实现医学影像网络基础设施上的协作、智能、公平的皮肤病诊断
  • 批准号:
    2319742
  • 财政年份:
    2024
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Standard Grant
The Role of Ethnic Racial Discrimination on the Development of Anxious Hypervigilance in Latina Youth
民族种族歧视对拉丁裔青少年焦虑过度警觉的影响
  • 批准号:
    10752122
  • 财政年份:
    2024
  • 资助金额:
    $ 66.52万
  • 项目类别:
SBIR Phase I: Novel Camera-Projector Device Leveraging Markerless Skin Registration and Projected Augmented Reality Software to Enable Navigation for Minimally Invasive Procedures
SBIR 第一阶段:新型相机投影仪设备利用无标记皮肤配准和投影增强现实软件实现微创手术导航
  • 批准号:
    2321906
  • 财政年份:
    2024
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Standard Grant
STTR Phase II: Dermatologist-level detection of suspicious pigmented skin lesions from high-resolution full-body images
STTR II 期:通过高分辨率全身图像对可疑色素性皮肤病变进行皮肤科医生级别的检测
  • 批准号:
    2335086
  • 财政年份:
    2024
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Cooperative Agreement
Maturation and resolution of Staphylococcus aureus skin abscess
金黄色葡萄球菌皮肤脓肿的成熟和消退
  • 批准号:
    MR/Y000447/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Fellowship
Investigating human immune responses to Staphylococcus aureus skin infection to accelerate vaccine development
研究人体对金黄色葡萄球菌皮肤感染的免疫反应以加速疫苗开发
  • 批准号:
    MR/X032736/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Fellowship
EAGER: Flexible and compressible e-Skin integrated with soft magnetic coil based ultra-thin actuator and touch sensor for robotics applications
EAGER:灵活且可压缩的电子皮肤与基于软磁线圈的超薄执行器和触摸传感器集成,适用于机器人应用
  • 批准号:
    2337074
  • 财政年份:
    2023
  • 资助金额:
    $ 66.52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了