Novel Mathematical Techniques for Advanced Tool-paths to Transform High-value Optical Fabrication

用于先进刀具路径的新颖数学技术,以改变高价值光学制造

基本信息

  • 批准号:
    ST/L001950/1
  • 负责人:
  • 金额:
    $ 35.9万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Precision lenses and mirrors are used for a host of applications - ground-based telescopes for astronomy, satellites looking up at space or down at the ground, machines to make semiconductor 'chips' (for computers to mobile phones...), defence systems, laser-systems and numerous other applications.The manufacture of precision optics is basically a two-stage process. First a glass blank is ground with a hard grinding wheel that cuts the material, to hog out the glass to the basic curved form. The glass is then polished using some form of pad that rubs the surface, using a water-slurry of a polishing compound - red rouge in the old days, white cerium oxide powder today. Over the last decade, the optics industry has experienced a revolution in computer numerical control (CNC) of both the grinding and polishing processes. The project involves two partner companies pre-eminent in both types of machine and processes. Zeeko Ltd (originally spun out of UCL research in this field) manufactures CNC polishing machines and measurement equipment. Cranfield Precision Ltd (a division of Cinetic Landis) produces CNC grinding machines. Such CNC machines almost always move the grinding or polishing tool across the surface in a standard back-and-forth raster pattern, or in a spiral path (by rotating the work-piece). A raster or spiral is a special case, because it crosses itself nowhere, and this simplifies calculating how the removal adds up. But, just like a tractor ploughing a field, these paths leave regular 'furrows' in the surface. Whilst these might be only nanometres deep (just tens of atoms) they cause stray light around an image in a telescope or camera. There are various ways of smoothing surfaces to remove these regular features, but this takes additional times. Moreover, each extra process leaves its own signature, which itself has to be removed ... in what sometimes seems like an endless circle!The new research will break out of this mould by using advanced mathematical methods to generate more complex tool-paths, which cross each other at myriads of points, and give a natural averaging effect. We call these 'hyper-crossing paths'. Furthermore, the polishing machines are able to change the polishing spot size 'on the fly'. In principle (and with the right mathematics) spot-size could be actively tuned to attack different sizes of surface-feature as the tool moves across a surface. We plan to develop this new idea, and are confident it will lead to a break-through in superior surfaces in less time.And what of the results? These will be incorporated in the standard software of the partner companies, enhancing their competitive position. The results will also be used on the machines at the National Facility for Ultra-precision Surfaces in North Wales, operated by Glyndwr University in partnership with University College London. This will give enhanced capability for manufacturing optics to support British Science and our overseas collaborators. Beyond this we plan to disseminate the findings to the wider UK academic and and manufacturing communities to collaborate on and develop applications and prototypes for applications in high precision surfaces outside of the optics sector e.g. medical - prosthetic joints.
精密透镜和镜子被用于许多应用--用于天文学的地面望远镜、仰望太空或俯视地面的卫星、制造半导体“芯片”的机器(从计算机到移动的手机.),国防系统、激光系统和许多其他应用。精密光学器件的制造基本上是一个两阶段的过程。首先,玻璃坯件用切割材料的硬砂轮研磨,以将玻璃拱出基本的弯曲形式。然后用某种形式的抛光垫摩擦玻璃表面,使用抛光化合物的水浆-旧时代的红色胭脂,今天的白色氧化铈粉末。在过去的十年中,光学行业经历了一场磨削和抛光工艺的计算机数控(CNC)革命。该项目涉及两个合作伙伴公司在这两种类型的机器和工艺卓越。Zeeko有限公司(最初从UCL在该领域的研究中分离出来)生产CNC抛光机和测量设备。克兰菲尔德精密有限公司(Cinetic Landis的一个部门)生产数控磨床。这种CNC机床几乎总是以标准的来回光栅模式或螺旋路径(通过旋转工件)在表面上移动研磨或抛光工具。光栅或螺旋线是一种特殊情况,因为它没有任何地方穿过自己,这简化了计算如何删除加起来。但是,就像拖拉机耕地一样,这些路径在表面留下规则的“犁沟”。虽然这些可能只有纳米深(只有几十个原子),但它们会在望远镜或相机中的图像周围产生杂散光。有多种方法可以平滑曲面以去除这些规则特征,但这需要额外的时间。此外,每个额外的进程都会留下自己的签名,而签名本身必须被删除。有时似乎是一个无止境的循环!新的研究将打破这种模式,通过使用先进的数学方法来生成更复杂的刀具路径,这些路径在无数点处相互交叉,并产生自然的平均效果。我们称之为“超交叉路径”。此外,抛光机能够“在运行中”改变抛光点尺寸。原则上(并与正确的数学)斑点的大小可以积极调整,以攻击不同大小的表面特征,因为工具在表面上移动。我们计划发展这个新的想法,并相信它将导致在更短的时间内突破上级表面。这些将被纳入合作伙伴公司的标准软件中,以提高其竞争地位。研究结果还将用于北威尔士国家超精密表面设施的机器上,该设施由Glyndwr大学与伦敦大学学院合作运营。这将增强制造光学器件的能力,以支持英国科学和我们的海外合作者。除此之外,我们计划将研究结果传播给更广泛的英国学术界和制造界,以合作开发光学领域以外的高精度表面应用的应用和原型,例如医疗假体关节。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robotic automation in computer controlled polishing
Interactions between manufacture and measurement of off-axis aspheres
离轴非球面的制造和测量之间的相互作用
Closing the metrology/process loop in CNC polishing
CNC 抛光中的计量/工艺闭环
  • DOI:
    10.1117/12.223553
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Walker D.D.
  • 通讯作者:
    Walker D.D.
Coordinate transformation of an industrial robot and its application in deterministic optical polishing
  • DOI:
    10.1117/1.oe.53.5.055102
  • 发表时间:
    2014-05
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Wei Wang;Guoyu Yu;Min Xu;D. Walker
  • 通讯作者:
    Wei Wang;Guoyu Yu;Min Xu;D. Walker
Advanced Abrasive Processes for Manufacturing Prototype Mirror Segments for the World's Largest Telescope
用于制造世界最大望远镜原型镜段的先进磨料工艺
  • DOI:
    10.4028/www.scientific.net/amr.1017.532
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Walker D
  • 通讯作者:
    Walker D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Walker其他文献

Interaction Mining: the new Frontier of Call Center Analytics
交互挖掘:呼叫中心分析的新前沿
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Pallotta;Rodolfo Delmonte;Lammert Vrieling;David Walker
  • 通讯作者:
    David Walker
Cladistic analysis of anuran POMC sequences
无尾目 POMC 序列的分支分析
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    3
  • 作者:
    J. Alrubaian;P. Danielson;David Walker;R. Dores
  • 通讯作者:
    R. Dores
Surgical interventions for the early management of Bell's palsy.
贝尔麻痹早期治疗的手术干预。
  • DOI:
    10.1002/14651858.cd007468.pub2
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kerrie McAllister;David Walker;P. Donnan;Iain R. C. Swan
  • 通讯作者:
    Iain R. C. Swan
The Missing Magmas of MOR: Insights From Phase Equilibrium Experiments on Plagioclase Ultraphyric Basalts
MOR 缺失的岩浆:斜长石超火玄武岩相平衡实验的见解
  • DOI:
    10.1029/2021gc009943
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    G. Ustunisik;R. Nielsen;David Walker
  • 通讯作者:
    David Walker
ガルゲンメンライン考――グリンメルスハウゼンと近世ドイツの植物幻想
关于 Gargenmenlein 的思考:格里梅尔斯豪森和早期现代德国植物幻想
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anges Spiquel;Anne Prouteau;Sophie Bastien;Mino Hirosh,Pierre-Louis Rey;Philippe Vanney;Marie-Therese Blondeau;Eve Morisi;David Walker;Raymond-Gay Crosier;Hirsoyuki Takatsuka;Harutoshi Inada;Maurice Weyembergh;Helene Ruffat;Gay Basset;Hiroshi MINO;吉田孝夫
  • 通讯作者:
    吉田孝夫

David Walker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Walker', 18)}}的其他基金

A National Electron Diffraction Facility for Nanomaterial Structural Studies
用于纳米材料结构研究的国家电子衍射装置
  • 批准号:
    EP/X014606/1
  • 财政年份:
    2023
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Research Grant
NeTS: Medium: Foundations and Applications of Modular Verification of Networks
NeTS:媒介:网络模块化验证的基础和应用
  • 批准号:
    2312539
  • 财政年份:
    2023
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Continuing Grant
IMR: MT: Tools for Programming Distributed Data-plane Measurements
IMR:MT:分布式数据平面测量编程工具
  • 批准号:
    2223515
  • 财政年份:
    2022
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Specifying and Verifying Network-wide Properties of Dynamic Data Planes
合作研究:FMitF:第一轨:指定和验证动态数据平面的网络范围属性
  • 批准号:
    2219862
  • 财政年份:
    2022
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Standard Grant
Under the skin of polishing - from nano to macro
皮肤下的抛光——从纳米到宏观
  • 批准号:
    EP/V029304/1
  • 财政年份:
    2021
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Research Grant
NeTS: Medium: Collaborative Research: Network Configuration Synthesis: A Path to Practical Deployment
NeTS:媒介:协作研究:网络配置综合:实际部署之路
  • 批准号:
    1703493
  • 财政年份:
    2017
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Continuing Grant
Optimised polishing media - a new approach
优化的抛光介质 - 一种新方法
  • 批准号:
    ST/P003648/1
  • 财政年份:
    2017
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Research Grant
Novel Mathematical Techniques for Advanced Tool-paths to Transform High-value Optical Fabrication
用于先进刀具路径的新颖数学技术,以改变高价值光学制造
  • 批准号:
    ST/L001950/2
  • 财政年份:
    2016
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Research Grant
TC: Large: Collaborative Research: High-Level Language Support for Trustworthy Networks
TC:大型:协作研究:对可信赖网络的高级语言支持
  • 批准号:
    1111520
  • 财政年份:
    2011
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Standard Grant
SHF:Small:Language Support for Ad Hoc Data Processing
SHF:Small:对即席数据处理的语言支持
  • 批准号:
    1016937
  • 财政年份:
    2010
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Continuing Grant

相似海外基金

Mathematical modelling techniques and applications
数学建模技术及应用
  • 批准号:
    2868747
  • 财政年份:
    2023
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Studentship
Enhancing Understanding of Long COVID Using Novel Mathematical Clustering Techniques
使用新颖的数学聚类技术增强对长期新冠肺炎的理解
  • 批准号:
    2738361
  • 财政年份:
    2022
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Studentship
Mathematical aspects of some robust techniques in risk management
风险管理中一些稳健技术的数学方面
  • 批准号:
    RGPIN-2017-04054
  • 财政年份:
    2021
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Discovery Grants Program - Individual
RUI: Asymptotic and Numerical Techniques in Mathematical Modeling of Membrane Filtration
RUI:膜过滤数学建模中的渐近和数值技术
  • 批准号:
    2108161
  • 财政年份:
    2021
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Standard Grant
Prototype classification models based on fuzzy max functions and their learning using mathematical optimization techniques
基于模糊最大函数的原型分类模型及其使用数学优化技术的学习
  • 批准号:
    21K12062
  • 财政年份:
    2021
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of complex moment-based methods and mathematical risk avoidance techniques for infinite dimensional eigenvalue problems
针对无限维特征值问题开发复杂的基于矩的方法和数学风险规避技术
  • 批准号:
    21H03451
  • 财政年份:
    2021
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical aspects of some robust techniques in risk management
风险管理中一些稳健技术的数学方面
  • 批准号:
    RGPIN-2017-04054
  • 财政年份:
    2020
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Discovery Grants Program - Individual
Improved Mathematical Programming Techniques for Approximation Algorithms
改进近似算法的数学编程技术
  • 批准号:
    RGPIN-2015-06496
  • 财政年份:
    2019
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical aspects of some robust techniques in risk management
风险管理中一些稳健技术的数学方面
  • 批准号:
    RGPIN-2017-04054
  • 财政年份:
    2019
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Discovery Grants Program - Individual
Development of advanced mathematical modelling techniques and algorithms to enhance the performance of a lithium ion battery management system
开发先进的数学建模技术和算法,以提高锂离子电池管理系统的性能
  • 批准号:
    524101-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 35.9万
  • 项目类别:
    Engage Grants Program
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了