A novel biohybrid electronic device architecture for environmental and physiological sensing

用于环境和生理传感的新型生物混合电子设备架构

基本信息

  • 批准号:
    EP/V03264X/1
  • 负责人:
  • 金额:
    $ 192.93万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The Bacterial Flagellar Motor is one of nature's rare rotary molecular machines. It enables bacterial swimming and is a key part of the bacterial chemotactic network that enables bacteria to direct their movement given the chemical environment. This network is one of the best-studied chemical signalling networks in biology, sensing down to nanomolar concentrations of specific chemicals on the time scale of seconds. The motor's rotational speed is linearly proportional to the bacterial electrochemical gradients, most notably of proton or sodium ions, while its direction is regulated by the chemotactic network. Recently, it has been discovered that the motor is also a mechanosensor. Given these properties, the motor has the potential to serve as a multimodal biosensor with unprecedented speed and sensitivity, and thus a tool for characterizing and studying the external environment, but also bacterial physiology itself. However, at the resolution needed, motor speed and rotational direction are currently detected optically, one motor at a time. A step-change in harnessing the unprecedented potential of this rotary molecular machine would be to detect each motor's rotation electrically and with high throughput. Here I propose to achieve this by specifically attaching individual bacteria to a precise location on the surface and testing two electrical means of detecting the motor's rotation: an integrated circuit and a graphene surface. The detection method will also be employed to fully characterize the three different sensing modalities offered by the flagellar motor: that of cells own physiology, of mechanical forces and of a given set of chemicals. The success of the project we will enable portable biosensor-on-a-chip configuration of the motor speed and rotational direction detection, which can be a game-changer in the biosensing field.
细菌鞭毛马达是自然界罕见的旋转分子机器之一。它使细菌能够游动,是细菌趋化网络的关键部分,使细菌能够在给定的化学环境中指导它们的运动。这个网络是生物学中研究得最好的化学信号网络之一,在秒的时间尺度上感知特定化学物质的纳摩尔浓度。马达的旋转速度与细菌的电化学梯度成线性比例,最显著的是质子或钠离子,而其方向由趋化网络调节。最近,已经发现马达也是机械传感器。鉴于这些特性,该电机有可能作为一种具有前所未有的速度和灵敏度的多模式生物传感器,从而成为表征和研究外部环境以及细菌生理学本身的工具。然而,在所需的分辨率下,电机速度和旋转方向目前是光学检测的,一次一个电机。利用这种旋转分子机器的前所未有的潜力的一个步骤变化将是以电力和高吞吐量检测每个电机的旋转。在这里,我建议通过将单个细菌特异性地附着到表面上的精确位置并测试两种检测电机旋转的电气手段来实现这一目标:集成电路和石墨烯表面。检测方法也将被用来充分表征鞭毛电机提供的三种不同的传感模式:细胞自身的生理,机械力和一组给定的化学物质。该项目的成功,我们将使便携式生物传感器芯片配置的电机速度和旋转方向检测,这可能是一个改变游戏规则的生物传感领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Teuta Pilizota其他文献

Multiphase Recovery of Escherichia Coli to Hyperosmotic Shock
  • DOI:
    10.1016/j.bpj.2011.11.825
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Teuta Pilizota;Joshua W. Shaevitz
  • 通讯作者:
    Joshua W. Shaevitz
Environmental conditions define the energetics of bacterial dormancy and its antibiotic susceptibility
环境条件决定细菌休眠的能量及其抗生素敏感性
  • DOI:
    10.1101/2020.06.18.160226
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Mancini;Teuta Pilizota
  • 通讯作者:
    Teuta Pilizota
How Does The Bacterial Flagellar Motor Of Rhodobacter Sphaeroides Stop - Using A Clutch Or A Brake?
  • DOI:
    10.1016/j.bpj.2008.12.3330
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Teuta Pilizota;Mostyn T. Brown;Mark C. Leake;Richard M. Berry;Judith P. Armitage
  • 通讯作者:
    Judith P. Armitage
The proton motive force determines Escherichia coli’s robustness to extracellular pH
质子动力决定了大肠杆菌对细胞外 pH 值的稳健性
  • DOI:
    10.1101/2021.11.19.469321
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guillaume Terradot;Ekaterina Krasnopeeva;P. Swain;Teuta Pilizota
  • 通讯作者:
    Teuta Pilizota
Bacterial Flagellar Switch Conformational Spread as a Mechanism for Cooperativity in the
细菌鞭毛转换构象传播作为协同机制
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Bai;Richard W. Branch;D. Nicolau;Teuta Pilizota;B. Steel;P. Maini;R. Berry
  • 通讯作者:
    R. Berry

Teuta Pilizota的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Teuta Pilizota', 18)}}的其他基金

Infections in complex physical environments: Life and death in the sinuses
复杂物理环境中的感染:鼻窦中的生与死
  • 批准号:
    EP/W023881/1
  • 财政年份:
    2022
  • 资助金额:
    $ 192.93万
  • 项目类别:
    Research Grant
A novel automated, aerated and affordable bioreactor technology
一种新颖的自动化、充气且经济实惠的生物反应器技术
  • 批准号:
    BB/T003979/1
  • 财政年份:
    2019
  • 资助金额:
    $ 192.93万
  • 项目类别:
    Research Grant

相似海外基金

Development of a biohybrid microrobotic system: Future drug delivery
生物混合微型机器人系统的开发:未来的药物输送
  • 批准号:
    EP/Y003489/1
  • 财政年份:
    2024
  • 资助金额:
    $ 192.93万
  • 项目类别:
    Research Grant
Japan_IPAP: Engineering synthetic neuromuscular junctions to drive the autonomous function of biohybrid robots
Japan_IPAP:工程合成神经肌肉接头以驱动生物混合机器人的自主功能
  • 批准号:
    BB/X012581/1
  • 财政年份:
    2023
  • 资助金额:
    $ 192.93万
  • 项目类别:
    Research Grant
Engineering a motile biohybrid microrobot
设计可移动的生物混合微型机器人
  • 批准号:
    2898856
  • 财政年份:
    2023
  • 资助金额:
    $ 192.93万
  • 项目类别:
    Studentship
CAREER: Harnessing Dynamic Cell-Scaffold Interactions to Develop Adaptive Biohybrid Systems
职业:利用动态细胞支架相互作用开发自适应生物混合系统
  • 批准号:
    2239647
  • 财政年份:
    2023
  • 资助金额:
    $ 192.93万
  • 项目类别:
    Continuing Grant
EAGER: Characterizing vertical swimming, payload capacity, and performance envelope of biohybrid robot jellyfish as future ocean monitoring platforms
EAGER:描述生物混合机器人水母作为未来海洋监测平台的垂直游泳、有效负载能力和性能范围
  • 批准号:
    2311867
  • 财政年份:
    2023
  • 资助金额:
    $ 192.93万
  • 项目类别:
    Standard Grant
Growing biohybrid scaffolds in the lab: Controlling the culture environment to create biohybrid scaffolds with pre-determined compositions and functio
在实验室中生长生物混合支架:控制培养环境以创建具有预定成分和功能的生物混合支架
  • 批准号:
    2891043
  • 财政年份:
    2023
  • 资助金额:
    $ 192.93万
  • 项目类别:
    Studentship
Developing multifunctional biohybrid and biointegrated materials and devices
开发多功能生物混合和生物集成材料和器件
  • 批准号:
    RGPIN-2016-05605
  • 财政年份:
    2022
  • 资助金额:
    $ 192.93万
  • 项目类别:
    Discovery Grants Program - Individual
SemiSynBio-III: Power Management Strategies for Computing and Storage in Biological, Biohybrid and Synthetic Systems
SemiSynBio-III:生物、生​​物混合和合成系统中计算和存储的电源管理策略
  • 批准号:
    2227609
  • 财政年份:
    2022
  • 资助金额:
    $ 192.93万
  • 项目类别:
    Standard Grant
Scalable fabrication of biohybrid materials for environmental performance
生物混合材料的可扩展制造以实现环保性能
  • 批准号:
    2748417
  • 财政年份:
    2022
  • 资助金额:
    $ 192.93万
  • 项目类别:
    Studentship
BIOMELD: A Modular Framework for Designing and Producing Biohybrid Machines
BIOMELD:用于设计和生产生物混合机器的模块化框架
  • 批准号:
    10044516
  • 财政年份:
    2022
  • 资助金额:
    $ 192.93万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了