Addressing Interdisciplinary challenges through Raman Microscopy - a new facility for UEA

通过拉曼显微镜应对跨学科挑战 - UEA 的新设施

基本信息

  • 批准号:
    EP/V034014/1
  • 负责人:
  • 金额:
    $ 68.49万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

This proposal seeks funding to purchase a Confocal Raman Microscope for the Science Faculty at UEA. This will be used by a large cohort of scientists, including early-career researchers and post-graduate students interested in the chemistry and properties of materials, to support their varied research work. It will strongly complement significant investments in other materials characterisation instrumentation over the last few years, including high precision confocal microscopy for imaging and metrology, (UKRI, 2020, £156K), (confocal) fluorescence microscopy (UKRI, 2019/20, £775K), scanning electron microscopy (UKRI, 2019, £620K), X-ray crystallography (EPSRC, 2019, £616K) and powder diffraction (UKRI, 2019, £140K), fluorescence spectroscopy (EPSRC, 2019, £61K) and NMR spectroscopy (solution and solid state, about £750K from internal resources over last 8 years).Raman spectroscopy measures the specific vibrations in molecules and materials. Different materials vibrate in different ways, which provides details about their molecular makeup and structural organisation. It is a valuable characterisation tool for a wide variety of projects in chemistry, engineering, biology, pharmacy and environmental science and can be applied to many different types of samples. In some cases, the Raman spectrum can act like a "chemical fingerprint" to allow an unknown sample to be identified, such as a microplastic particle in a water sample. In other cases, very subtle changes to the details of the spectrum can provide information about chemical reactions that have taken place, or changes to the physical state of a sample such as crystallisation. Raman spectroscopy can be considered complementary to infrared spectroscopy, but it also has many important and unique attributes that open up completely new measurement opportunities. For example, it offers the ability to measure in water or other solvents, inside transparent containers (e.g. electrochemical cells, flow cells, sealed ampoules of explosive or moisture-sensitive materials) and in many other configurations not easily amenable to other techniques, as well as specific material types, such as carbon materials; graphene, graphene oxide, nanotubes, that cannot be easily characterised by other techniques. In Raman microscopes, laser beams can be focused very tightly, providing incredible opportunities to achieve 2D and 3D imaging at sub-micron length scales using confocal microscopy techniques. Far beyond standard measurement scenarios, this enables detailed spectral characterisation with simultaneous sub-micron spatial resolution and thus opens up the world of micro- and nano-materials, composites, microphase separation phenomena and porous solids to analysis. As part of UEA's research vision, its portfolio of materials-centred research has steadily grown in volume and importance, particularly with the emergence of the new School of Engineering (ENG), which will become independent in 2021. It will be boosted by the opening (January 2021) of the £7M Productivity East (https://beta.uea.ac.uk/groups-and-centres/productivity-east) advanced prototyping and manufacturing facility. This development is aimed at accelerating the growth of engineering education and research at UEA, for which Materials Science is already a significant research area. The characterisation of materials is an essential, complementary tool for exploiting the investment in manufacturing capability. As well as supporting a large cohort of scientists from diverse schools of study in their research endeavours, the Raman microscope will also contribute immediately to the Productivity East infrastructure, which is key to delivering local and regional impact from the research undertaken at the University.
该提案旨在为东英吉利大学理学院购买共焦拉曼显微镜提供资金。这将被一大批科学家使用,包括对材料的化学和性质感兴趣的早期职业研究人员和研究生,以支持他们的各种研究工作。它将有力地补充过去几年对其他材料表征仪器的重大投资,包括用于成像和计量的高精度共焦显微镜,(UKRI,2020年,156 K英镑),(共聚焦)荧光显微镜(UKRI,2019/20,775 K英镑),扫描电子显微镜(UKRI,2019年,620 K英镑),X射线晶体学(EPSRC,2019,£ 616 K)和粉末衍射(UKRI,2019,£ 140 K),荧光光谱(EPSRC,2019年,61 K英镑)和NMR光谱(溶液和固态,过去8年内部资源约750 K英镑)。拉曼光谱测量分子和材料中的特定振动。不同的材料以不同的方式振动,这提供了有关其分子组成和结构组织的细节。它是化学、工程、生物、制药和环境科学领域各种项目的宝贵表征工具,可应用于许多不同类型的样品。在某些情况下,拉曼光谱可以像“化学指纹”一样,允许识别未知样品,例如水样中的微塑料颗粒。在其他情况下,光谱细节的非常细微的变化可以提供有关已经发生的化学反应的信息,或者样品物理状态的变化,例如结晶。拉曼光谱可以被认为是红外光谱的补充,但它也有许多重要和独特的属性,开辟了全新的测量机会。例如,它提供了在水或其他溶剂中、在透明容器(例如电化学电池、流动电池、爆炸性或湿敏材料的密封安瓿)内以及在许多其他不易于采用其他技术的配置中进行测量的能力,以及特定的材料类型,例如碳材料;石墨烯、氧化石墨烯、纳米管,这些材料无法通过其他技术容易地表征。在拉曼显微镜中,激光束可以非常紧密地聚焦,为使用共聚焦显微镜技术在亚微米长度尺度上实现2D和3D成像提供了令人难以置信的机会。这远远超出了标准的测量方案,能够同时实现亚微米空间分辨率的详细光谱表征,从而打开了微米和纳米材料、复合材料、微相分离现象和多孔固体的分析世界。作为UEA研究愿景的一部分,其以材料为中心的研究组合在数量和重要性方面稳步增长,特别是随着新工程学院(ENG)的出现,该学院将于2021年独立。它将通过启用(2021年1月)700万英镑的Productivity East(https://beta.uea.ac.uk/groups-and-centres/productivity-east)先进的原型设计和制造设施来推动。这一发展旨在加速UEA工程教育和研究的发展,材料科学已经是一个重要的研究领域。材料的表征是利用制造能力投资的重要补充工具。除了支持来自不同研究学校的大批科学家的研究工作外,拉曼显微镜还将立即为生产力东部基础设施做出贡献,这是从大学进行的研究中产生地方和区域影响的关键。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fiona Lettice其他文献

Fiona Lettice的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fiona Lettice', 18)}}的其他基金

Core Carbonate Chemistry Equipment
核心碳酸盐化学设备
  • 批准号:
    EP/X034860/1
  • 财政年份:
    2023
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Research Grant
Smart Environments Research Facility
智能环境研究设施
  • 批准号:
    EP/T024593/1
  • 财政年份:
    2020
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Research Grant
Meeting the SDGs: creating innovative infrastructures and policy solutions to support sustainable development in Global South communities (GS-DEV)
实现可持续发展目标:创建创新基础设施和政策解决方案以支持全球南方社区的可持续发展(GS-DEV)
  • 批准号:
    EP/T015411/1
  • 财政年份:
    2019
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Research Grant
New Gas Chromatography-Mass Spectrometry and Fluorescence facilities for the UEA Schools of Chemistry and Pharmacy
东安格利亚大学化学和药学院的新气相色谱-质谱和荧光设施
  • 批准号:
    EP/S017909/1
  • 财政年份:
    2018
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Research Grant

相似海外基金

REU Site: Interdisciplinary Micro/nano/additive-manufacturing Program Addressing Challenges Today - Gen 3 (IMPACT-Gen3)
REU 网站:应对当今挑战的跨学科微/纳米/增材制造计划 - 第 3 代 (IMPACT-Gen3)
  • 批准号:
    2348869
  • 财政年份:
    2024
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Standard Grant
Conference: Student and Early Career Participation for the Solving Water Availability Challenges through an Interdisciplinary Framework Chapman Conference
会议:学生和早期职业参与通过跨学科框架解决水资源挑战查普曼会议
  • 批准号:
    2231605
  • 财政年份:
    2022
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Standard Grant
Orbital and surface risks from rocket bodies: Physical challenges, interdisciplinary solutions
火箭主体的轨道和表面风险:物理挑战、跨学科解决方案
  • 批准号:
    DH-2022-00477
  • 财政年份:
    2022
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Discovery Horizons
REU SITE: Interdisciplinary Micro/nano/additive-manufacturing Program Addressing Challenges Today - Next Generation (IMPACT-NG)
REU 站点:跨学科微/纳米/增材制造计划应对当今挑战 - 下一代 (IMPACT-NG)
  • 批准号:
    1950137
  • 财政年份:
    2020
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Standard Grant
New challenges for post-communist remembrance cultures: Interdisciplinary perspectives in transitional justice
后共产主义纪念文化的新挑战:过渡时期司法的跨学科视角
  • 批准号:
    AH/S004963/1
  • 财政年份:
    2019
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Research Grant
Interdisciplinary study on the Interaction between health and biodiversity: challenges for new aspects of the healthy society
健康与生物多样性相互作用的跨学科研究:健康社会新方面的挑战
  • 批准号:
    19K21569
  • 财政年份:
    2019
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Grand Challenges in Plant Pathology Interdisciplinary Study Group
植物病理学跨学科研究组的巨大挑战
  • 批准号:
    BB/R013330/1
  • 财政年份:
    2018
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Training Grant
Compensation Scheme for East Japan Earthquake Radiation and Tsunami Victims' Living Welfare and their Community-Building Challenges: Interdisciplinary Discussions
东日本地震辐射和海啸受害者的生活福利及其社区建设挑战的补偿计划:跨学科讨论
  • 批准号:
    16H03569
  • 财政年份:
    2016
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Interdisciplinary Micro/nano-manufacturing Program Addressing Challenges Today (IMPACT)
应对当今挑战的跨学科微/纳米制造计划(IMPACT)
  • 批准号:
    1560235
  • 财政年份:
    2016
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Standard Grant
FEW: A Workshop to Identify Interdisciplinary Data Science Approaches and Challenges to Enhance Understanding of Interactions of Food Systems and Water Systems
FEW:确定跨学科数据科学方法和挑战的研讨会,以增强对粮食系统和水系统相互作用的理解
  • 批准号:
    1541876
  • 财政年份:
    2015
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了