FaSCiNATe: Facility for the Structural Characterisation of materials for Nuclear Applications operating at high Temperatures

FaSCiNATe:高温下核应用材料结构表征设施

基本信息

  • 批准号:
    EP/V035851/1
  • 负责人:
  • 金额:
    $ 257.01万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

FaSCiNATe will provide a unique and complementary suite of scientific instruments to characterise the thermal stability of microstructural damage in neutron irradiated materials and the associated effects on mechanical properties. Being able to predict materials degradation under irradiation is required for life-time extension of existing nuclear reactors, improving safety and operational efficiencies of fuel assemblies and for designing more efficient reactors for the future. Research is ongoing on new materials that would enable future reactors to operate at higher temperatures and therefore be more efficient. However, to understand how material properties change inside reactors, tests on neutron irradiated samples need to be done at these higher temperatures. The instruments in this project will give performance information at high temperatures and characterise microstructural changes so that underlying mechanisms causing performance degradation can be better understood. This will allow to improve materials to be able to cope in the high radiation dose and high temperature environment of future reactor systems.At UKAEA's Materials Research Facility (MRF), materials that have become radioactive by being subjected to neutron or high energy proton irradiation, can be processed and analysed in an environment that provides shielding to protect staff from exposure. Three additional complementary scientific techniques will be implemented to measure changes in the materials' microstructure and the resulting impact on their thermal and mechanical properties: differential scanning calorimetry, high temperature X-ray diffraction and in-situ micron-scale mechanical testing at high temperature. These scientific instruments will be integrated in shielded environments and equipped with robotic sample mounting systems to remotely insert and retrieve radioactive samples into the analysis equipment.Neutron irradiation damage often affects mechanical behaviour of components under load. By studying material deformation at the micron-scale, it can be derived how irradiation affects the fundamental deformation mechanisms. The in-situ load frame mounted inside an electron microscope will allow to observe materials deform at operational temperatures to infer ways to prevent the accumulation of serious damage by improved material design.Heating defective materials will cause atoms to rearrange and therefore heal some of the damage, thus releasing energy. Depending on the defects and the material, this energy can be small and needs sensitive equipment to detect it. A high-vacuum differential scanning calorimetry can accurately sense the change in energy as a function of temperature and therefore measure the amount of energy stored in irradiated materials. Phase changes also release or absorb energy, so irradiation-induced phases can also be quantified with this technique.Subtle changes in atomic positions, caused by the presence of irradiation defect clusters can be detected non-destructively using the highly-sensitive technique of X-ray diffraction. Improvements proposed in this application will allow in-situ heating of the specimen, thus revealing the evolution of the damage as it recovers with increasing temperature, illuminating possible strategies for removing damage and fundamental information.The combination of these techniques provides a comprehensive characterisation of microstructural damage in a statistical way, complementing local detailed characterisations using transmission electron microscopy. This will enable materials research on neutron and proton irradiated samples for a wide range of high-impact research topics including: structural integrity of safety critical components, mechanisms of fuel cladding degradation, lifetime extension through annealing of the reactor pressure vessel and development of new materials for future reactor systems, Gen-IV fission & fusion, which operate at higher temperatures and higher doses.
该公司将提供一套独特的、互为补充的科学仪器,用于表征中子辐照材料微结构损伤的热稳定性及其对机械性能的相关影响。为了延长现有核反应堆的寿命,提高燃料组件的安全性和运行效率,以及为未来设计更高效的反应堆,需要能够预测材料在辐照下的退化。对新材料的研究正在进行中,这种材料将使未来的反应堆能够在更高的温度下运行,从而提高效率。然而,为了了解反应堆内部材料性质的变化,需要在这些较高的温度下对中子辐照的样品进行测试。该项目中的仪器将提供高温下的性能信息,并表征微观结构变化,以便更好地了解导致性能下降的潜在机制。这将允许改进材料,使其能够应对未来反应堆系统的高辐射剂量和高温环境。在英国原子能机构的材料研究设施(MRF),由于受到中子或高能质子照射而变得具有放射性的材料,可以在提供屏蔽的环境中进行处理和分析,以保护工作人员免受辐射。将实施另外三项补充科学技术,以测量材料微观结构的变化及其对其热和机械性能的影响:差示扫描量热法、高温X射线衍射和高温下的原位微米级机械测试。这些科学仪器将被集成在屏蔽环境中,并配备机器人样品安装系统,以远程将放射性样品插入和回收到分析设备中。中子辐射损伤通常会影响部件在负载下的机械行为。通过研究微米尺度的材料变形,可以推导出辐射如何影响基本的变形机制。安装在电子显微镜内的原位加载框架将允许观察材料在工作温度下的变形,以推断通过改进材料设计来防止严重损伤积累的方法。加热有缺陷的材料将导致原子重新排列,从而修复一些损伤,从而释放能量。根据缺陷和材料的不同,这种能量可能很小,需要敏感的设备来检测。高真空差示扫描量热仪可以准确地感知能量随温度的变化,从而测量辐照材料中存储的能量。相变还可以释放或吸收能量,因此也可以用这种技术来量化辐照诱导的相。利用高灵敏度的X射线衍射技术,可以非破坏性地检测由于辐照缺陷团簇的存在而引起的原子位置的微小变化。这一应用中提出的改进将允许对样品进行原位加热,从而揭示随着温度的升高而恢复的损伤的演变,阐明可能的去除损伤的策略和基本信息。这些技术的组合以统计方式提供微结构损伤的全面表征,补充使用透射电子显微镜的局部详细表征。这将使对中子和质子辐照样品的材料研究能够用于广泛的高影响研究课题,包括:安全关键部件的结构完整性、燃料包壳退化机制、反应堆压力容器的退火延长寿命以及为未来的反应堆系统开发新材料、在更高温度和更高剂量下运行的第四代裂变与聚变。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Boxel其他文献

Steven Boxel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

A National Electron Diffraction Facility for Nanomaterial Structural Studies
用于纳米材料结构研究的国家电子衍射装置
  • 批准号:
    EP/X014444/1
  • 财政年份:
    2023
  • 资助金额:
    $ 257.01万
  • 项目类别:
    Research Grant
A National Electron Diffraction Facility for Nanomaterial Structural Studies
用于纳米材料结构研究的国家电子衍射装置
  • 批准号:
    EP/X014606/1
  • 财政年份:
    2023
  • 资助金额:
    $ 257.01万
  • 项目类别:
    Research Grant
Ending the HIV Epidemic with Equity: An All-facility Intervention to Reduce Structural Racism and Discrimination and Its Impact on Patient and Healthcare Staff Wellbeing
以公平方式终结艾滋病毒流行:减少结构性种族主义和歧视及其对患者和医护人员福祉的影响的全设施干预措施
  • 批准号:
    10474844
  • 财政年份:
    2022
  • 资助金额:
    $ 257.01万
  • 项目类别:
Ending the HIV Epidemic with Equity: An All-facility Intervention to Reduce Structural Racism and Discrimination and Its Impact on Patient and Healthcare Staff Wellbeing
以公平方式终结艾滋病毒流行:减少结构性种族主义和歧视及其对患者和医护人员福祉的影响的全设施干预措施
  • 批准号:
    10653267
  • 财政年份:
    2022
  • 资助金额:
    $ 257.01万
  • 项目类别:
Structural Composites Research Facility (SCRF)
结构复合材料研究设施 (SCRF)
  • 批准号:
    EP/P029922/1
  • 财政年份:
    2017
  • 资助金额:
    $ 257.01万
  • 项目类别:
    Research Grant
Operations and Maintenance Support: UBC Regional Structural Biology Facility
运营和维护支持:UBC 区域结构生物学设施
  • 批准号:
    RTI-2017-00193
  • 财政年份:
    2017
  • 资助金额:
    $ 257.01万
  • 项目类别:
    Research Tools and Instruments
Advanced X-ray facility for structural elucidation and photocrystallography
用于结构解析和光晶体学的先进 X 射线设备
  • 批准号:
    LE170100144
  • 财政年份:
    2017
  • 资助金额:
    $ 257.01万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Automated Fibre Braiding Facility for Multifunctional Structural Materials
多功能结构材料自动化纤维编织设备
  • 批准号:
    LE160100070
  • 财政年份:
    2016
  • 资助金额:
    $ 257.01万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Operations and Maintenance Support: UBC Regional Structural Biology Facility
运营和维护支持:UBC 区域结构生物学设施
  • 批准号:
    RTI-2017-00193
  • 财政年份:
    2016
  • 资助金额:
    $ 257.01万
  • 项目类别:
    Research Tools and Instruments
Portable femtosecond pump-probe facility (PORTO) for dynamic structural science
用于动态结构科学的便携式飞秒泵浦探针设备 (PORTO)
  • 批准号:
    EP/P001548/1
  • 财政年份:
    2016
  • 资助金额:
    $ 257.01万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了