Molecular Models for III-V Quantum Dots

III-V 量子点的分子模型

基本信息

  • 批准号:
    EP/V043412/1
  • 负责人:
  • 金额:
    $ 22.6万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

Quantum dots (QDs) are fragments of semiconductors that absorb and emit different colours of light depending on their size. They are a nanoscale device, that is they are over a million times smaller than a golf ball. Quantum dots have excellent properties that offer the potential for widespread applications ranging from solar panels to biological and medical sensing and from use in television screens to electronics. However, the major barrier to their industrial uptake is their challenging manufacture. In an ideal preparation of these nanoparticles, all of the output quantum dots would be identical in size - representing perfect quality control. In practice however, this is very difficult to achieve. In a standard method, two materials react to form a central point, or nucleus, around which the QD grows in a matter of minutes. If there is non-even mixing of the precursors, then these nuclei form at different times and so the growth period lasts for different lengths of time, resulting in different sizes. In a research laboratory it is relatively easy to control this, but on a practical industrial scale, it extremely hard to achieve instantaneous mixing. This has resulted in a low uptake of the use and manufacture of these amazing materials. In this project, we will develop a new synthetic route that eliminates the need to form nuclei, by preparing these in advance - removing the need for instantaneous mixing. This will enable us to have perfect quality control over the size of the quantum dots that we produce. We will prepare compounds, consisting of a cluster of the elements that make up the quantum dot and optimise the route from these cluster nuclei to QDs by controlling the growth.A secondary advantage of these clusters is that they will have the same atomic structure as the QDs. For quantum dots it can be very hard to determine the exact position of each atom, without using an extremely expensive high-powered electron microscopes, of which there are only a few worldwide. However, we can take advantage of routine molecular techniques to determine the exact atomic positions of the cluster's constituents, such as any additives or their surfaces. In this second part of the project, we will develop so-called molecular models of the QDs, to allow the rationale design of future materials and empower more researchers, facilitating the future development of QDs.
量子点(QDs)是半导体的碎片,根据它们的大小吸收和发射不同颜色的光。它们是纳米级的设备,也就是说它们比高尔夫球小一百万倍。量子点具有优异的性能,具有广泛应用的潜力,从太阳能电池板到生物和医学传感,从电视屏幕到电子产品。然而,其工业应用的主要障碍是其具有挑战性的制造。在这些纳米粒子的理想制备中,所有输出的量子点在尺寸上都是相同的,这代表着完美的质量控制。然而,在实践中,这是很难实现的。在标准方法中,两种材料反应形成一个中心点或原子核,量子点围绕它在几分钟内生长。如果前体混合不均匀,那么这些核形成的时间就不同,因此生长期的长度也不同,大小也不同。在研究实验室中,控制这一点相对容易,但在实际工业规模上,实现瞬时混合是非常困难的。这导致了对这些神奇材料的使用和制造的低吸收。在这个项目中,我们将开发一种新的合成路线,通过提前准备这些原子核,消除了瞬间混合的需要,从而消除了形成原子核的需要。这将使我们能够对我们生产的量子点的大小进行完美的质量控制。我们将制备由组成量子点的一簇元素组成的化合物,并通过控制生长来优化从这些簇核到量子点的路径。这些团簇的第二个优点是它们将具有与量子点相同的原子结构。对于量子点来说,要确定每个原子的确切位置是非常困难的,除非使用极其昂贵的高功率电子显微镜,而这种显微镜在世界上只有少数几种。然而,我们可以利用常规分子技术来确定团簇成分的确切原子位置,例如任何添加剂或其表面。在这个项目的第二部分,我们将开发所谓的量子点的分子模型,允许未来材料的基本原理设计,并赋予更多的研究人员,促进量子点的未来发展。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Colloidal III-V quantum dots: a synthetic perspective
胶体 III-V 量子点:合成视角
Reeling them in: Ph2PSiMe3 in the sequential formation of InP magic-sized clusters
将它们卷入:Ph2PSiMe3 连续形成 InP 魔法大小的团簇
  • DOI:
    10.26434/chemrxiv-2022-15xmc
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gazis T
  • 通讯作者:
    Gazis T
Juggling Optoelectronics and Catalysis: The Dual Talents of Bench Stable 1,4-Azaborinines.
兼顾光电和催化:稳定 1,4-氮杂硼烷的双重才能。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Matthews其他文献

OECD Reviews of Evaluation and Assessment in Education DENMARK
经合组织对丹麦教育评价和评估的审查
  • DOI:
    10.1787/9789264116597-en
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Claire Shewbridge;Eunice Jang;Peter Matthews;Paulo Santiago
  • 通讯作者:
    Paulo Santiago
OECD Reviews of Evaluation and Assessment in Education
经合组织教育评价与评估审查
  • DOI:
    10.1787/22230955
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Claire Shewbridge;Eunice Jang;Peter Matthews;Paulo Santiago;Deborah Nusche;Lorna Earl;William Maxwell;D. Laveault;J. Macbeath;Alison Gilmore;Pam Sammons;Graham Donaldson;Anne Looney;Henry Braun;Gábor Halász;Johan van Bruggen;Paul Wright
  • 通讯作者:
    Paul Wright
A mouse informatics platform for phenotypic and translational discovery
  • DOI:
    10.1007/s00335-015-9599-2
  • 发表时间:
    2015-08-28
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Natalie Ring;Terrence F. Meehan;Andrew Blake;James Brown;Chao-Kung Chen;Nathalie Conte;Armida Di Fenza;Tanja Fiegel;Neil Horner;Julius O. B. Jacobsen;Natasha Karp;Thomas Lawson;Jeremy C. Mason;Peter Matthews;Hugh Morgan;Mike Relac;Luis Santos;Damian Smedley;Duncan Sneddon;Alice Pengelly;Ilinca Tudose;Jonathan W. G. Warren;Henrik Westerberg;Gagarine Yaikhom;Helen Parkinson;Ann-Marie Mallon
  • 通讯作者:
    Ann-Marie Mallon
Robots in Teams
团队中的机器人
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Matthews;S. Greenspan
  • 通讯作者:
    S. Greenspan
Robots in Society
社会中的机器人

Peter Matthews的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Matthews', 18)}}的其他基金

Valuing Different Perspectives - evaluation and evaluative knowledge
重视不同的观点 - 评价和评价知识
  • 批准号:
    AH/L01310X/2
  • 财政年份:
    2014
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Research Grant
Valuing Different Perspectives - evaluation and evaluative knowledge
重视不同的观点 - 评价和评价知识
  • 批准号:
    AH/L01310X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Research Grant
Mathematical Sciences: Mixing Rate Calculations and Combinatorial Sampling
数学科学:混合率计算和组合采样
  • 批准号:
    9001295
  • 财政年份:
    1990
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310113
  • 财政年份:
    2023
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
  • 批准号:
    2406648
  • 财政年份:
    2023
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
III: Small: RUI: A Fairness Auditing Framework for Predictive Mobility Models
III:小:RUI:预测移动模型的公平性审核框架
  • 批准号:
    2304213
  • 财政年份:
    2023
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310114
  • 财政年份:
    2023
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
CRII: III: Pursuing Interpretability in Utilitarian Online Learning Models
CRII:III:追求功利在线学习模式的可解释性
  • 批准号:
    2245946
  • 财政年份:
    2023
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models
III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型
  • 批准号:
    2321504
  • 财政年份:
    2023
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
RNA polymerase III-related leukodystrophy: Understanding disease pathogenesis and developing novel therapeutic approaches using murine models
RNA 聚合酶 III 相关脑白质营养不良:了解疾病发病机制并利用小鼠模型开发新的治疗方法
  • 批准号:
    479527
  • 财政年份:
    2023
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Operating Grants
EAGER: III: Learning with less data: Capitalizing on formal pedagogies and human performance to incorporate domain knowledge into deep learning models
EAGER:III:用更少的数据学习:利用正规教学法和人类表现将领域知识纳入深度学习模型
  • 批准号:
    2228910
  • 财政年份:
    2022
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
RNA polymerase III-related leukodystrophy: Understanding disease pathogenesis and developing novel therapeutic approaches using murine models
RNA 聚合酶 III 相关脑白质营养不良:了解疾病发病机制并利用小鼠模型开发新的治疗方法
  • 批准号:
    472825
  • 财政年份:
    2022
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Operating Grants
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
  • 批准号:
    2212143
  • 财政年份:
    2022
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了