Understanding Neural Networks through Dynamics
通过动力学了解神经网络
基本信息
- 批准号:EP/V046829/1
- 负责人:
- 金额:$ 25.41万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Artificial Neural Networks (ANNs) have recently moved back into the spotlight as tools to simulate, predict, and classify complex inputs. Our ability to use these new computational methods with confidence in applications demands that we develop a better fundamental understanding of why, how, and in what situations ANNs can be relied on. Reliance on such tools for decision support is increasing rapidly in fields from autonomous vehicles to policing, as is the list of notable examples of biases, failures, and injustices that can all be traced back to fundamental mathematical issues.There has been particular focus recently on reservoir computing, related to recurrent neural networks, in which most of the network connections form a single-layer recurrent 'dynamical reservoir' with fixed (usually randomly chosen) connections and training carried out by adjusting a small number of output weights. In this project the work will focus on a class of reservoir systems known as Echo State Networks (ESNs).This proposal will develop new fundamental understanding of structure in ESNs, and will develop previously-unexploited properties of ESNs as dynamical systems; in turn this will enable new applications of ESNs to physical systems, including climate dynamics.
人工神经网络(ANN)最近重新成为人们关注的焦点,作为模拟,预测和分类复杂输入的工具。我们有能力在应用中自信地使用这些新的计算方法,这要求我们对为什么、如何以及在什么情况下可以依赖人工神经网络有更好的基本理解。从自动驾驶汽车到警务等领域,对此类工具的决策支持的依赖正在迅速增加,和不公正,都可以追溯到基本的数学问题。最近特别关注水库计算,与递归神经网络,其中大多数网络连接形成具有固定(通常随机选择的)连接的单层循环“动态库”,并且通过调整少量输出权重来执行训练。在这个项目中,工作将集中在一类被称为回声状态网络(ESNs)的水库系统上。这个建议将发展对ESNs结构的新的基本理解,并将发展ESNs作为动力系统的以前未开发的特性;反过来,这将使ESNs在物理系统中的新应用成为可能,包括气候动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Dawes其他文献
Jonathan Dawes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: SaTC: Towards Understanding the Robustness of Graph Neural Networks against Graph Perturbations
CRII:SaTC:了解图神经网络对抗图扰动的鲁棒性
- 批准号:
2241713 - 财政年份:2023
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks
协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击
- 批准号:
2342618 - 财政年份:2023
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant
Italy-UK partnership: Understanding the neural networks underlying circadian decisions
意大利-英国合作伙伴关系:了解昼夜节律决策背后的神经网络
- 批准号:
BB/W018454/1 - 财政年份:2022
- 资助金额:
$ 25.41万 - 项目类别:
Research Grant
RI: Small: Understanding the Inductive Bias Caused by Invariance and Multi Scale in Neural Networks
RI:小:理解神经网络中不变性和多尺度引起的归纳偏差
- 批准号:
2213335 - 财政年份:2022
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant
Understanding the role of pyruvate metabolism-dependent signaling networks in the differentiation of neural stem cells
了解丙酮酸代谢依赖性信号网络在神经干细胞分化中的作用
- 批准号:
RGPIN-2021-03352 - 财政年份:2022
- 资助金额:
$ 25.41万 - 项目类别:
Discovery Grants Program - Individual
Towards Improved Understanding and Efficient Utilization of Depthwise Computation in Modern Neural Networks
提高对现代神经网络深度计算的理解和有效利用
- 批准号:
577088-2022 - 财政年份:2022
- 资助金额:
$ 25.41万 - 项目类别:
Alliance Grants
Understanding the role of pyruvate metabolism-dependent signaling networks in the differentiation of neural stem cells
了解丙酮酸代谢依赖性信号网络在神经干细胞分化中的作用
- 批准号:
RGPIN-2021-03352 - 财政年份:2021
- 资助金额:
$ 25.41万 - 项目类别:
Discovery Grants Program - Individual
Understanding the three-dimensional multiscale porous microstructures by applying deep neural networks
应用深度神经网络理解三维多尺度多孔微结构
- 批准号:
21K14090 - 财政年份:2021
- 资助金额:
$ 25.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Seeing Through Atmospheric Turbulence: Image Restoration and Understanding using Deep Convolutional Neural Networks
职业:透视大气湍流:使用深度卷积神经网络进行图像恢复和理解
- 批准号:
2045489 - 财政年份:2021
- 资助金额:
$ 25.41万 - 项目类别:
Continuing Grant
Understanding the role of pyruvate metabolism-dependent signaling networks in the differentiation of neural stem cells
了解丙酮酸代谢依赖性信号网络在神经干细胞分化中的作用
- 批准号:
DGECR-2021-00369 - 财政年份:2021
- 资助金额:
$ 25.41万 - 项目类别:
Discovery Launch Supplement