CAREER: Seeing Through Atmospheric Turbulence: Image Restoration and Understanding using Deep Convolutional Neural Networks

职业:透视大气湍流:使用深度卷积神经网络进行图像恢复和理解

基本信息

  • 批准号:
    2045489
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-15 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

Atmospheric turbulence can significantly degrade the quality of images acquired by long-range imaging systems by causing spatially and temporally random fluctuations in the index of refraction of the atmosphere. Variations in the refractive index causes the captured images to be geometrically distorted and blurry. These distortions adversely affect the performance of subsequent computer vision algorithms such as object detection and recognition. Hence, it is important to compensate for the visual degradation in images caused by atmospheric turbulence. Adaptive optics-based techniques can be used to compensate for turbulence effects in images. However, they require large, complex and expensive hardware. On the other hand, image processing-based approaches are cheap and effective. The idea of the proposed approach is to pose the turbulence degraded image restoration problem as a nonlinear regression problem, where the optimal parameters are learned from synthetically generated data. As a function approximator, we propose to use deep convolutional neural networks. The goal of this CAREER project is to develop data-driven learning-based approaches for restoration and understanding of images degraded by atmospheric turbulence. This project will help create new undergraduate/graduate courses on Deep Learning and Image Restoration. Further, this project will impact many diversity outreach activities, including specific outreach to ensure broad participation of women, minorities and disadvantaged groups.Our research will provide a comprehensive framework for restoring and understanding images/videos degraded by atmospheric turbulence. We will significantly innovate in the areas of supervised, semi-supervised and unsupervised image restoration techniques by developing novel end-to-end trainable deep convolutional neural networks and corresponding loss functions. Furthermore, domain transfer learning-based methods for adapting computer vision algorithms such as object detection and segmentation to turbulence-degraded images will be developed. Algorithms that will be developed in this project will significantly enhance the quality of images and videos collected by long-range visible and infrared imagining systems, and will result in improved understanding of images degraded by atmospheric turbulence. The proposed methods will be useful in many applications of remote sensing, long-range surveillance, optical communications, astronomy, road traffic monitoring, underwater imaging, and autonomous navigation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大气湍流会造成大气折射率在空间和时间上的随机波动,从而大大降低远程成像系统所获得的图像的质量。折射率的变化导致捕获的图像在几何上失真和模糊。这些失真会对后续计算机视觉算法(如对象检测和识别)的性能产生不利影响。因此,重要的是补偿大气湍流引起的图像中的视觉退化。基于自适应光学的技术可用于补偿图像中的湍流效应。然而,它们需要大型、复杂和昂贵的硬件。另一方面,基于图像处理的方法是廉价和有效的。所提出的方法的思想是把湍流退化图像恢复问题作为一个非线性回归问题,其中最佳参数是从综合生成的数据中学习的。作为函数逼近器,我们建议使用深度卷积神经网络。这个CAREER项目的目标是开发基于数据驱动的学习方法,用于恢复和理解大气湍流退化的图像。该项目将帮助创建关于深度学习和图像恢复的新本科生/研究生课程。此外,该项目将影响许多多样性外展活动,包括确保妇女,少数民族和弱势群体广泛参与的具体外展活动。我们的研究将为恢复和理解因大气湍流而退化的图像/视频提供全面的框架。我们将通过开发新型端到端可训练深度卷积神经网络和相应的损失函数,在监督、半监督和无监督图像恢复技术领域进行重大创新。此外,还将开发基于域迁移学习的方法,用于使计算机视觉算法(如物体检测和分割)适应清晰度退化的图像。该项目将开发的算法将大大提高远程可见光和红外成像系统收集的图像和视频的质量,并将导致更好地理解大气湍流退化的图像。所提出的方法将在遥感,远程监视,光通信,天文学,道路交通监测,水下成像和自主navigation.This奖项反映了NSF的法定使命的许多应用是有用的,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermal to Visible Image Synthesis Under Atmospheric Turbulence
SPIN Road Mapper: Extracting Roads from Aerial Images via Spatial and Interaction Space Graph Reasoning for Autonomous Driving
NBD-GAP: Non-Blind Image Deblurring without Clean Target Images
Hyperspectral Pansharpening Based on Improved Deep Image Prior and Residual Reconstruction
Escaping Data Scarcity for High-Resolution Heterogeneous Face Hallucination
摆脱高分辨率异构面部幻觉的数据稀缺
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vishal Patel其他文献

Perforation of Acellular Dermal Matrices Increases the Rate of Cellular Invasion
无细胞真皮基质的穿孔增加了细胞侵袭的速度
  • DOI:
    10.1097/01.prs.0000455347.89834.11
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    H. Osoria;Adam Jacoby;Rachel C Hooper;Kadria N Derrick;Vishal Patel;Karina A. Hernandez;S. Boers;Ope A. Asanbe;Tarek Elshazly;A. Sasson;J. Spector
  • 通讯作者:
    J. Spector
Transcriptomic responses to sodium chloride‐induced osmotic stress: A study of industrial fed‐batch CHO cell cultures
对氯化钠诱导的渗透应激的转录组反应:工业补料分批 CHO 细胞培养物的研究
  • DOI:
    10.1002/btpr.398
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    D. Shen;Thomas R. Kiehl;Sarwat Khattak;Z. Li;Aiqing He;P. Kayne;Vishal Patel;Isaac Neuhaus;S. Sharfstein
  • 通讯作者:
    S. Sharfstein
Thrown for a Loop: Symptomatic Severe Carotid Stenosis Treated with Proximal Reimplantation of the Internal Carotid Artery
陷入困境:采用颈内动脉近端再植术治疗有症状的严重颈动脉狭窄
  • DOI:
    10.1016/j.jvs.2025.01.077
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Vishal Patel;Natalia Cavagnaro;Ali Siddiqui;Kousta Foteh;Eric Trestman;Ray Hunter
  • 通讯作者:
    Ray Hunter
IL-1 Signal Inhibition in Alcohol-Related Hepatitis: A Randomized, Double-Blind, Placebo-Controlled Trial of Canakinumab
酒精相关性肝炎中白细胞介素-1 信号抑制:卡那单抗的一项随机、双盲、安慰剂对照试验
  • DOI:
    10.1016/j.cgh.2024.07.025
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    12.000
  • 作者:
    Nikhil Vergis;Vishal Patel;Karolina Bogdanowicz;Justyna Czyzewska-Khan;Rosemary Keshinro;Francesca Fiorentino;Emily Day;Paul Middleton;Stephen Atkinson;Thomas Tranah;Mary Cross;Daphne Babalis;Neil Foster;Emma Lord;Alberto Quaglia;Josephine Lloyd;Robert Goldin;William Rosenberg;Richard Parker;Paul Richardson;Mark Thursz
  • 通讯作者:
    Mark Thursz
WHEN TWO IS LESS THAN ONE: PERSISTENT LEFT SUPERIOR VENA CAVA WITH A DOUBLE SHUNT
  • DOI:
    10.1016/s0735-1097(21)04364-3
  • 发表时间:
    2021-05-11
  • 期刊:
  • 影响因子:
  • 作者:
    Vishal Patel;John Javien
  • 通讯作者:
    John Javien

Vishal Patel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vishal Patel', 18)}}的其他基金

RI: Small: Collaborative Research: Active and Rapid Domain Generalization
RI:小型:协作研究:主动且快速的领域泛化
  • 批准号:
    1910141
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Collaborative: Presentation-attack-robust biometrics systems via computational imaging of physiology and materials
SaTC:核心:中:协作:通过生理学和材料的计算成像实现演示攻击鲁棒生物识别系统
  • 批准号:
    1923184
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Collaborative: Presentation-attack-robust biometrics systems via computational imaging of physiology and materials
SaTC:核心:中:协作:通过生理学和材料的计算成像实现演示攻击鲁棒生物识别系统
  • 批准号:
    1801435
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Sparse and Low Rank Methods for Imbalanced and Heterogeneous Data
CIF:小型:协作研究:针对不平衡和异构数据的稀疏和低秩方法
  • 批准号:
    1922840
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Sparse and Low Rank Methods for Imbalanced and Heterogeneous Data
CIF:小型:协作研究:针对不平衡和异构数据的稀疏和低秩方法
  • 批准号:
    1618677
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

天文建筑物对Seeing影响的实测研究
  • 批准号:
    10873034
  • 批准年份:
    2008
  • 资助金额:
    46.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Neural Computational Imaging - A Path Towards Seeing Through Scattering
职业:神经计算成像——透视散射的途径
  • 批准号:
    2339616
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Does long-term topography preserve details of the seismic cycle? Seeing through, and exploiting, the diverse forcings influencing actively deforming landscapes.
职业:长期地形是否保留了地震周期的细节?
  • 批准号:
    2237437
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
New insight into functional eye evolution: seeing the world through moving photoreceptors.
对眼睛功能进化的新见解:通过移动的感光器看世界。
  • 批准号:
    BB/X006247/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Seeing Migration Narratives: Enhancing Decision Making Through Visualisation of Policy Debates for Civil Society and the Media
了解移民叙事:通过民间社会和媒体政策辩论的可视化增强决策制定
  • 批准号:
    EP/X028909/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
EAGER: Geoheritage and Two-Eyed Seeing - Advances in Interdisciplinary Earth Science Research, Learning, and Inclusion through Shared Ways of Knowing
EAGER:地质遗产和两只眼睛看到的——通过共享认知方式在跨学科地球科学研究、学习和包容性方面取得进展
  • 批准号:
    2136139
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAR-PF: Seeing through carbonate diagenesis using the triple oxygen isotope system
EAR-PF:使用三氧同位素系统透视碳酸盐岩成岩作用
  • 批准号:
    1952615
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship Award
Seeing the World through a Mathematical Lens: A Place-Based Mobile App for Creating Math Walks
通过数学镜头看世界:用于创建数学漫步的基于地点的移动应用程序
  • 批准号:
    2115393
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
To enhance prenatal education program interrupted by COVID-19 in remote and rural First Nations communities by expanding remote education through two-eyed seeing framework to improve maternal child health
通过双眼观察框架扩大远程教育,以改善偏远和农村原住民社区因 COVID-19 中断的产前教育计划,以改善孕产妇健康
  • 批准号:
    451641
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Operating Grants
EAGER: All-Optical Information Processing Device for Seeing Through Diffusers at the Speed of Light
EAGER:以光速透过漫射器的全光学信息处理装置
  • 批准号:
    2054102
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Seeing through the sea floor: Development of a basis for evaluation of spatio-temporal environmental dynamics in seafloor surface sediments using acoustic technology
透视海底:利用声学技术评估海底表面沉积物时空环境动态的基础
  • 批准号:
    20KK0238
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了