Interfacing Ultracold Polar Molecules with Rydberg atoms: A Hybrid Platform for Quantum Science
超冷极性分子与里德伯原子的接口:量子科学的混合平台
基本信息
- 批准号:EP/V047302/1
- 负责人:
- 金额:$ 25.7万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The predictions of quantum mechanics, the theory that governs all matter at a microscopic level, are often fascinating and sometimes mystifying. At the heart of this theory are two fundamental concepts. The first, wave-particle duality, implies that particles, such as electrons in an atom, can behave like waves and that light waves can behave like particles. The second, entanglement, is the concept that once two (or more) particles have interacted, they cannot be treated as independent entities no matter how far apart they are. These inherently quantum properties can lead to phenomena that defy our classical intuition. Superconductivity, the flow of charge through a material without resistance, is an excellent example. Currently, there is world-wide interest in harnessing the unique properties of quantum mechanics to develop a new-wave of technological devices that have the potential to surpass even the best classical counterparts, just as a superconductor outperforms copper. We can expect such quantum technologies to deliver more powerful methods of computation, completely secure communication, enhanced metrology and sensors with unparalleled sensitivity. Many different physical platforms are being developed for quantum technologies, including trapped ions, ultracold atoms, superconducting devices and photons. Each platform has its own strengths and weaknesses, with no single system providing the ideal architecture. A solution to this problem is to construct a hybrid platform combining two (or more) unique quantum systems in such a way as to profit from their individual advantages whilst simultaneously mitigating their disadvantages.In this context, we propose to combine ultracold polar molecules and highly-excited Rydberg atoms in a flexible platform using optical tweezer arrays. This innovative approach aims to leverage the richness associated with the long-lived rotational states of molecules by interfacing them with strongly interacting Rydberg atoms to realise a hybrid quantum system ideally suited to investigate problems in quantum science and technology. Our platform promises new capabilities and a wealth of future research directions including (a) The non-destructive detection and readout of the internal rotational state of a polar molecule for applications in quantum simulation. (b) The creation of a new class of ultracold molecules, Giant Polyatomic Rydberg Molecules, providing a testbed for studying fundamental electron molecule scattering in the quantum regime. (c) The implementation of fast molecule-molecule quantum gates mediated by a Rydberg atom for applications in quantum information processing. (d) The realisation of effective spin-spin interactions between molecules in an optical lattice mediated by Rydberg atoms for studies of quantum magnetism. Our vision is underpinned by the existence of strong long-range charge-dipole interactions between a diatomic polar molecule and a Rydberg atom. The goal of this two-year research project is to measure and learn to control these interactions using single atoms and molecules confined in tightly confining optical traps, known as optical tweezers. This will provide a springboard to the longer-term objectives of our research vision.
量子力学是在微观层面上控制所有物质的理论,它的预言常常令人着迷,有时甚至令人费解。这个理论的核心是两个基本概念。第一种是波粒二象性,意味着粒子,比如原子中的电子,可以表现得像波,而光波可以表现得像粒子。第二种是纠缠,即一旦两个(或更多)粒子相互作用,无论它们相距多远,它们都不能被视为独立的实体。这些固有的量子特性可以导致违背我们经典直觉的现象。超导性,即电荷在无电阻的材料中的流动,就是一个很好的例子。目前,全世界都有兴趣利用量子力学的独特性质来开发新一波的技术设备,这些设备甚至有可能超过最好的经典设备,就像超导体超过铜一样。我们可以期待这种量子技术提供更强大的计算方法,完全安全的通信,增强的计量和传感器,具有无与伦比的灵敏度。许多不同的物理平台正在为量子技术开发,包括捕获离子,超冷原子,超导设备和光子。每个平台都有自己的优势和劣势,没有一个单一的系统可以提供理想的架构。一个解决这个问题的方法是构建一个混合平台,结合两个(或更多)独特的量子系统,以这样一种方式,从他们各自的优势,同时减轻他们的缺点。在这种情况下,我们提出了联合收割机结合超冷极性分子和高激发里德堡原子在一个灵活的平台,使用光镊阵列。这种创新的方法旨在通过将分子与强相互作用的里德伯原子连接来利用与分子的长寿命旋转状态相关的丰富性,以实现非常适合研究量子科学和技术问题的混合量子系统。我们的平台承诺提供新的功能和丰富的未来研究方向,包括(a)非破坏性检测和读出极性分子的内部旋转状态,用于量子模拟。(b)创造了一类新的超冷分子,巨型多原子里德伯分子,为研究量子体系中的基本电子分子散射提供了实验平台。(c)以里德伯原子为媒介的快速分子-分子量子门在量子信息处理中的应用。(d)在里德伯原子介导的光学晶格中实现分子间有效的自旋-自旋相互作用,用于量子磁性研究。我们的设想是由双原子极性分子和里德伯原子之间存在强的长程电荷偶极相互作用支撑的。这个为期两年的研究项目的目标是测量和学习控制这些相互作用,使用被严格限制在光阱中的单个原子和分子,称为光镊。这将为我们的研究愿景的长期目标提供一个跳板。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Formation of Ultracold Molecules by Merging Optical Tweezers.
- DOI:10.1103/physrevlett.130.223401
- 发表时间:2023-02
- 期刊:
- 影响因子:8.6
- 作者:Daniel K. Ruttley;A. Guttridge;Stefan Spence;R. Bird;C. L. Le Sueur;J. Hutson;S. Cornish
- 通讯作者:Daniel K. Ruttley;A. Guttridge;Stefan Spence;R. Bird;C. L. Le Sueur;J. Hutson;S. Cornish
Universality of Z 3 parafermions via edge-mode interaction and quantum simulation of topological space evolution with Rydberg atoms
通过边缘模式相互作用实现 Z 3 平费米子的普适性以及里德伯原子拓扑空间演化的量子模拟
- DOI:10.1103/physrevresearch.5.023076
- 发表时间:2023
- 期刊:
- 影响因子:4.2
- 作者:Benhemou A
- 通讯作者:Benhemou A
Observation of Rydberg Blockade Due to the Charge-Dipole Interaction between an Atom and a Polar Molecule.
- DOI:10.1103/physrevlett.131.013401
- 发表时间:2023-03
- 期刊:
- 影响因子:8.6
- 作者:A. Guttridge;Daniel K. Ruttley;Archie C. Baldock;Rosario Gonz'alez-F'erez;H. Sadeghpour;C. Adams;S. Cornish
- 通讯作者:A. Guttridge;Daniel K. Ruttley;Archie C. Baldock;Rosario Gonz'alez-F'erez;H. Sadeghpour;C. Adams;S. Cornish
Universality of Z3 parafermions via edge mode interaction and quantum simulation of topological space evolution with Rydberg atoms
通过边缘模式相互作用实现 Z3 平费米子的普适性以及里德伯原子拓扑空间演化的量子模拟
- DOI:10.48550/arxiv.2111.04132
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Benhemou A
- 通讯作者:Benhemou A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Cornish其他文献
Simon Cornish的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Cornish', 18)}}的其他基金
SimPoMol: Quantum Simulation with Ultracold Polar Molecules
SimPoMol:超冷极性分子的量子模拟
- 批准号:
EP/X023354/1 - 财政年份:2022
- 资助金额:
$ 25.7万 - 项目类别:
Research Grant
Developing Molecular Quantum Technologies
开发分子量子技术
- 批准号:
EP/W00299X/1 - 财政年份:2022
- 资助金额:
$ 25.7万 - 项目类别:
Research Grant
Dilute Quantum Fluids Beyond the Mean-Field
超出平均场的稀释量子流体
- 批准号:
EP/T015241/1 - 财政年份:2020
- 资助金额:
$ 25.7万 - 项目类别:
Research Grant
QSUM: Quantum Science with Ultracold Molecules
QSUM:超冷分子的量子科学
- 批准号:
EP/P01058X/1 - 财政年份:2017
- 资助金额:
$ 25.7万 - 项目类别:
Research Grant
Understanding Collisions of Ultracold Polar Molecules
了解超冷极性分子的碰撞
- 批准号:
EP/P008275/1 - 财政年份:2017
- 资助金额:
$ 25.7万 - 项目类别:
Research Grant
A Stable Quantum Gas of Fermionic Polar Molecules
费米子极性分子的稳定量子气体
- 批准号:
EP/N007085/1 - 财政年份:2016
- 资助金额:
$ 25.7万 - 项目类别:
Research Grant
Probing Non-Equilibrium Quantum Many-Body Dynamics with Bright Matter-Wave Solitons
用亮物质波孤子探测非平衡量子多体动力学
- 批准号:
EP/L010844/1 - 财政年份:2014
- 资助金额:
$ 25.7万 - 项目类别:
Research Grant
A Quantum Gas of Ultracold Polar Molecules
超冷极性分子的量子气体
- 批准号:
EP/H003363/1 - 财政年份:2010
- 资助金额:
$ 25.7万 - 项目类别:
Research Grant
Bright matter-wave solitons: formation, dynamics and quantum reflection
明亮的物质波孤子:形成、动力学和量子反射
- 批准号:
EP/F002068/1 - 财政年份:2008
- 资助金额:
$ 25.7万 - 项目类别:
Research Grant
Quantum-Degenerate Gases for Precision Measurements (QuDeGPM)
用于精密测量的量子简并气体 (QuDeGPM)
- 批准号:
EP/G026602/1 - 财政年份:2008
- 资助金额:
$ 25.7万 - 项目类别:
Research Grant
相似海外基金
Experiments with ultracold polar molecules in magic traps
魔法陷阱中超冷极性分子的实验
- 批准号:
2748102 - 财政年份:2022
- 资助金额:
$ 25.7万 - 项目类别:
Studentship
SimPoMol: Quantum Simulation with Ultracold Polar Molecules
SimPoMol:超冷极性分子的量子模拟
- 批准号:
EP/X023354/1 - 财政年份:2022
- 资助金额:
$ 25.7万 - 项目类别:
Research Grant
Microscopy of Ultracold Polar Molecules in Optical Lattices
光学晶格中超冷极性分子的显微镜观察
- 批准号:
1912154 - 财政年份:2019
- 资助金额:
$ 25.7万 - 项目类别:
Continuing Grant
A gas of ultracold polar molecules at high phase-space density
高相空间密度的超冷极性分子气体
- 批准号:
2127601 - 财政年份:2018
- 资助金额:
$ 25.7万 - 项目类别:
Studentship
Towards quantum simulation with ultracold polar molecules
超冷极性分子的量子模拟
- 批准号:
1918074 - 财政年份:2017
- 资助金额:
$ 25.7万 - 项目类别:
Studentship
Quantum control of ultracold polar molecules
超冷极性分子的量子控制
- 批准号:
1858373 - 财政年份:2017
- 资助金额:
$ 25.7万 - 项目类别:
Studentship
Understanding Collisions of Ultracold Polar Molecules
了解超冷极性分子的碰撞
- 批准号:
EP/P008275/1 - 财政年份:2017
- 资助金额:
$ 25.7万 - 项目类别:
Research Grant
A two-dimensional ultracold gas of fermionic polar LiCs molecules
费米子极性 LiCs 分子的二维超冷气体
- 批准号:
288092145 - 财政年份:2016
- 资助金额:
$ 25.7万 - 项目类别:
Research Units
Towards quantum simulation with ultracold polar molecules
超冷极性分子的量子模拟
- 批准号:
1735543 - 财政年份:2016
- 资助金额:
$ 25.7万 - 项目类别:
Studentship
Ultracold Neutral and Ionic Polar Molecules for Quantum Computing
用于量子计算的超冷中性和离子极性分子
- 批准号:
1005453 - 财政年份:2010
- 资助金额:
$ 25.7万 - 项目类别:
Standard Grant