Dilute Quantum Fluids Beyond the Mean-Field
超出平均场的稀释量子流体
基本信息
- 批准号:EP/T015241/1
- 负责人:
- 金额:$ 102.6万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
If we peer deep inside nature to a microscopic level, we find a strange world governed by quantum mechanics where our intuition breaks down. In this fascinating regime, the position of a particle has inherent uncertainty and is perpetually fluctuating. Such quantum fluctuations lie at the heart of a number of physical phenomena, ranging from the van der Waals force to Hawking radiation in black holes, and may provide the ultimate limit to technologies based on quantum effects. However, quantum fluctuations are difficult to observe experimentally and to describe theoretically.Since their realization in 1995, Bose-Einstein condensates (BECs) have provided a unique window through which to view the quantum world. A BEC is a gas of identical atoms cooled down to less than a millionth of a degree above absolute zero. At this point the uncertainty in an individual atom's position becomes greater than the separation between atoms and it is impossible to identify individual atoms. Instead, the gas behaves like a giant wave of matter dominated by quantum mechanics, and displays a range of striking quantum properties such as the ability to interfere with another BEC and the ability to flow without viscosity (superfluidity). In addition, BECs are amenable to a high degree of experimental control (for example, to manipulate and interrogate the system in time and space) and they can be imaged to high resolution. The behaviour of BECs, including the properties above, are captured to a high degree of accuracy by considering just the average behaviour of all the atoms: the so-called "mean-field". Over the years since 1995, a synergy of experiments and theoretical works have established a deep understanding of the quantum mean-field and how it influences the system behaviour. However, in a BEC, quantum fluctuations are small compared to the mean-field, and as such, the merits offered by BECs have not extended to the realm of quantum fluctuations.Enter the quantum liquid droplet. When two BECs co-exist, the mean-field quantum effects from each BEC can be made to cancel each other out, leaving behind the quantum fluctuations as the dominant effect within the system. This causes the system to change from a BEC gas to a liquid-like droplet. But this is far from your conventional liquid droplet: whereas, say, water is hard to compress because the electronic shells of neighbouring atoms refuse to overlap, in the quantum liquid it is because of quantum fluctuations. As such, the quantum droplet owes its existence to intrinsically quantum effects; this makes it a fascinating object to study. Moreover, it provides a platform to study quantum fluctuations, from their microscopic origins to their macroscopic manifestations.We will engineer quantum droplets, for the first time in the UK, using a mixture of caesium and ytterbium BECs; this atomic combination will enable us to exert high levels of control over the liquid. Given that this state has only recently been discovered, there is much to study and learn. We will use our experimental capabilities to push the droplets to their limits. We will map out the regimes for which they are supported, as well as the details of how they form. We will experimentally interrogate them in a range of scenarios, effectively prodding and pushing them, to understand how they respond. We will pay particular attention to effectively 2D and 1D geometries where quantum fluctuations are predicted to be greatly enhanced. Alongside our experiments, we will develop and test theoretical models to describe our observations; this will allow us to address open questions regarding the underlying physics and quantify the precise role of the quantum fluctuations. The findings of our work will be of fundamental importance in deepening our understanding of quantum fluctuations and may motivate applications of quantum droplets such as in precision spectroscopy and deposition.
如果我们在微观层面上深入观察自然,我们会发现一个由量子力学控制的奇怪世界,在那里我们的直觉崩溃了。在这个迷人的状态中,粒子的位置具有固有的不确定性,并且永远在波动。这种量子涨落是许多物理现象的核心,从范德华力到黑洞中的霍金辐射,并可能为基于量子效应的技术提供最终限制。然而,量子涨落很难用实验观察和理论上描述。自1995年实现以来,玻色-爱因斯坦凝聚体(BECs)为观察量子世界提供了一个独特的窗口。BEC是一种由相同原子组成的气体,冷却到比绝对零度高不到百万分之一度。在这一点上,单个原子位置的不确定性大于原子之间的距离,不可能识别单个原子。相反,这种气体的行为就像一股受量子力学支配的巨大物质波,并表现出一系列惊人的量子特性,比如能够干扰另一种BEC,能够无粘性流动(超流动性)。此外,BECs可以接受高度的实验控制(例如,在时间和空间上操纵和询问系统),并且可以以高分辨率成像。通过考虑所有原子的平均行为,即所谓的“平均场”,BECs的行为,包括上述性质,都得到了高度精确的捕获。自1995年以来,实验和理论工作的协同作用已经建立了对量子平均场及其如何影响系统行为的深刻理解。然而,在BEC中,量子涨落与平均场相比较小,因此,BEC所提供的优点尚未扩展到量子涨落领域。进入量子液滴。当两个BEC共存时,可以使每个BEC的平均场量子效应相互抵消,留下量子涨落作为系统内的主导效应。这使得系统从BEC气体变为液体状液滴。但这与传统的液滴相差甚远:如果说,水很难压缩是因为邻近原子的电子壳层拒绝重叠,那么在量子液体中,这是因为量子涨落。因此,量子液滴的存在本质上归功于量子效应;这使它成为一个迷人的研究对象。此外,它提供了一个研究量子涨落的平台,从它们的微观起源到它们的宏观表现。我们将在英国首次使用铯和镱BECs的混合物来设计量子液滴;这种原子组合将使我们能够对液体施加高水平的控制。考虑到这种状态是最近才被发现的,有很多东西需要研究和学习。我们将利用我们的实验能力将液滴推向极限。我们将描绘出他们所支持的政权,以及他们如何形成的细节。我们将实验性地在一系列场景中询问他们,有效地刺激和推动他们,以了解他们的反应。我们将特别关注有效的二维和一维几何形状,其中量子涨落被预测将大大增强。除了我们的实验,我们将开发和测试理论模型来描述我们的观察;这将使我们能够解决关于基础物理学的开放性问题,并量化量子涨落的精确作用。我们的研究结果将对加深我们对量子涨落的理解具有重要意义,并可能激发量子液滴在精密光谱和沉积等方面的应用。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamics of a degenerate Cs-Yb mixture with attractive interspecies interactions
具有有吸引力的种间相互作用的简并 Cs-Yb 混合物的动力学
- DOI:10.1103/physrevresearch.3.033096
- 发表时间:2021
- 期刊:
- 影响因子:4.2
- 作者:Wilson K
- 通讯作者:Wilson K
Quantum droplets in imbalanced atomic mixtures
不平衡原子混合物中的量子液滴
- DOI:10.1103/physrevresearch.5.033167
- 发表时间:2023
- 期刊:
- 影响因子:4.2
- 作者:Flynn T
- 通讯作者:Flynn T
Observation of magnetic Feshbach resonances between Cs and Yb 173
Cs 和 Yb 之间磁 Feshbach 共振的观察 173
- DOI:10.1103/physrevresearch.4.043072
- 发表时间:2022
- 期刊:
- 影响因子:4.2
- 作者:Franzen T
- 通讯作者:Franzen T
Quantum Monte Carlo-based density functional for one-dimensional Bose-Bose mixtures
- DOI:10.1103/physrevresearch.5.023050
- 发表时间:2023-01
- 期刊:
- 影响因子:4.2
- 作者:Jakub Kopyci'nski;L. Parisi;N. Parker;K. Pawłowski
- 通讯作者:Jakub Kopyci'nski;L. Parisi;N. Parker;K. Pawłowski
Phase separation in binary Bose mixtures at finite temperature
有限温度下二元玻色混合物中的相分离
- DOI:10.21468/scipostphys.15.4.171
- 发表时间:2023
- 期刊:
- 影响因子:5.5
- 作者:Spada G
- 通讯作者:Spada G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Cornish其他文献
Simon Cornish的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Cornish', 18)}}的其他基金
SimPoMol: Quantum Simulation with Ultracold Polar Molecules
SimPoMol:超冷极性分子的量子模拟
- 批准号:
EP/X023354/1 - 财政年份:2022
- 资助金额:
$ 102.6万 - 项目类别:
Research Grant
Developing Molecular Quantum Technologies
开发分子量子技术
- 批准号:
EP/W00299X/1 - 财政年份:2022
- 资助金额:
$ 102.6万 - 项目类别:
Research Grant
Interfacing Ultracold Polar Molecules with Rydberg atoms: A Hybrid Platform for Quantum Science
超冷极性分子与里德伯原子的接口:量子科学的混合平台
- 批准号:
EP/V047302/1 - 财政年份:2021
- 资助金额:
$ 102.6万 - 项目类别:
Research Grant
QSUM: Quantum Science with Ultracold Molecules
QSUM:超冷分子的量子科学
- 批准号:
EP/P01058X/1 - 财政年份:2017
- 资助金额:
$ 102.6万 - 项目类别:
Research Grant
Understanding Collisions of Ultracold Polar Molecules
了解超冷极性分子的碰撞
- 批准号:
EP/P008275/1 - 财政年份:2017
- 资助金额:
$ 102.6万 - 项目类别:
Research Grant
A Stable Quantum Gas of Fermionic Polar Molecules
费米子极性分子的稳定量子气体
- 批准号:
EP/N007085/1 - 财政年份:2016
- 资助金额:
$ 102.6万 - 项目类别:
Research Grant
Probing Non-Equilibrium Quantum Many-Body Dynamics with Bright Matter-Wave Solitons
用亮物质波孤子探测非平衡量子多体动力学
- 批准号:
EP/L010844/1 - 财政年份:2014
- 资助金额:
$ 102.6万 - 项目类别:
Research Grant
A Quantum Gas of Ultracold Polar Molecules
超冷极性分子的量子气体
- 批准号:
EP/H003363/1 - 财政年份:2010
- 资助金额:
$ 102.6万 - 项目类别:
Research Grant
Bright matter-wave solitons: formation, dynamics and quantum reflection
明亮的物质波孤子:形成、动力学和量子反射
- 批准号:
EP/F002068/1 - 财政年份:2008
- 资助金额:
$ 102.6万 - 项目类别:
Research Grant
Quantum-Degenerate Gases for Precision Measurements (QuDeGPM)
用于精密测量的量子简并气体 (QuDeGPM)
- 批准号:
EP/G026602/1 - 财政年份:2008
- 资助金额:
$ 102.6万 - 项目类别:
Research Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Hydrodynamics of quantum fluids
量子流体的流体动力学
- 批准号:
DP240101033 - 财政年份:2024
- 资助金额:
$ 102.6万 - 项目类别:
Discovery Projects
Conference: Organizing 2024 International Conference on Quantum Fluids and Solids
会议:组织2024年量子流体和固体国际会议
- 批准号:
2318163 - 财政年份:2023
- 资助金额:
$ 102.6万 - 项目类别:
Standard Grant
Microscopy of Ultracold Magnetic Quantum Fluids
超冷磁性量子流体的显微镜检查
- 批准号:
2207367 - 财政年份:2022
- 资助金额:
$ 102.6万 - 项目类别:
Continuing Grant
Study on novel helium-3 quantum fluids with various dimensionalities and correlations designed by nano-sized environments
纳米环境设计的各种维度和相关性的新型氦3量子流体的研究
- 批准号:
22K03510 - 财政年份:2022
- 资助金额:
$ 102.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF-BSF: Transformation, modulation, and coupling of polariton and exciton quantum fluids
NSF-BSF:极化子和激子量子流体的转化、调制和耦合
- 批准号:
2004287 - 财政年份:2020
- 资助金额:
$ 102.6万 - 项目类别:
Continuing Grant
CAREER: Quantum Hydrodynamics: From Electron Fluids To Chiral Active Matter
职业:量子流体动力学:从电子流体到手性活性物质
- 批准号:
1944967 - 财政年份:2020
- 资助金额:
$ 102.6万 - 项目类别:
Continuing Grant
Novel Electron Fluids in Quantum Materials
量子材料中的新型电子流体
- 批准号:
EP/T001194/1 - 财政年份:2020
- 资助金额:
$ 102.6万 - 项目类别:
Research Grant
CsYb Droplets - Dilute Quantum Fluids Beyond the Mean-Field
CsYb 液滴 - 稀释超出平均场的量子流体
- 批准号:
EP/T01573X/1 - 财政年份:2020
- 资助金额:
$ 102.6万 - 项目类别:
Research Grant
Non-equilibrium classical, quantum and active fluids
非平衡经典流体、量子流体和活性流体
- 批准号:
406818893 - 财政年份:2018
- 资助金额:
$ 102.6万 - 项目类别:
Research Grants