Tuneable Excitonic Integrated Circuits
可调谐激子集成电路
基本信息
- 批准号:EP/V048163/1
- 负责人:
- 金额:$ 25.8万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is a fundamental science exploration of novel ways to manipulate and confine quasiparticles known as excitons emerging in atomically thin (2D) semiconductors and their heterostructures, with the aim to demonstrate the control over fluxes of these hydrogen-like bosonic particles and therefore open a pathway to the study of excitons in controllable potential profiles. This studies are cornerstone to pioneer the on-chip bosonic counterpart of quantum electronics and novel macroscopic quantum states. At the same time the on-chip control of excitons dynamics and flow may offer radically new approaches to interface efficient photon-based signal communication to electron-based signal processing technologies. In this proposal we will undertake the timely and ambitious search for radically novel physical concepts needed to enable the development of tuneable excitonic integrated circuits working in ambient conditions.2D semiconductors transition metal dichalcogenides (TMDC) typically have an exciton binding energy exceeding the room temperature thermal energy. In addition, their photo-physical properties can be tuned by controlling the electrostatic doping, the dielectric environment and stacking sequences of materials assembled in so-called van der Waals heterostructures leading to the observation of long lived interlayer excitons consisting of spatially separated electron-hole pairs in 2D heterostructures, Moiré excitons, a high-temperature macroscopic state corresponding to the condensation of interlayer excitons akin to a condensate of atoms and the electric field control of interlayer excitons in heterostructures. Whilst 2D systems are an ideally suited platform for exploring the novel fundamental science of excitons, the ambitious and timely quest at the core of this project will have to overcome four main challenges. Can an exciton effective pressure be engineered in 2D materials to displace these charge neutral quasiparticles which do not respond to an electric field? Is there any new type of exciton with a non-zero electric dipole and a sufficiently large oscillator strength to enable room temperature electrical tuneability in 2D heterostructures? Which 2D materials are better suited for tuneable excitonic integrated circuits working in ambient conditions? Are there ways to control the exciton lifetimes? This proposal will pioneer answers and solutions to the aforementioned challenges to accomplish a step change in the control of excitons in integrated circuits operating in ambient conditions. This timely and ambitious goal will be accomplished by exploring novel fundamental science of the physics of excitons in some of the most promising material systems for the on-chip control of exciton fluxes such as atomically thin semiconductors.
该项目是对操纵和限制原子薄(2D)半导体及其异质结构中出现的激子(激子)的新方法进行的基础科学探索,旨在证明对这些类氢玻色子粒子通量的控制,从而开辟一条在可控电势分布中研究激子的途径。这项研究是开创量子电子学的片上玻色子对应物和新颖的宏观量子态的基石。同时,激子动力学和流动的片上控制可能提供全新的方法,将基于光子的高效信号通信与基于电子的信号处理技术连接起来。在本提案中,我们将及时而雄心勃勃地寻找全新的物理概念,以开发在环境条件下工作的可调谐激子集成电路。二维半导体过渡金属二硫化物(TMDC)通常具有超过室温热能的激子结合能。此外,它们的光物理性质可以通过控制静电掺杂、介电环境和在所谓范德华异质结构中组装的材料的堆叠顺序来调节,从而观察到由二维异质结构中空间分离的电子空穴对组成的长寿命层间激子,莫尔激子,一种与 类似于原子凝聚的层间激子凝聚以及异质结构中层间激子的电场控制。虽然二维系统是探索激子的新颖基础科学的理想平台,但该项目核心的雄心勃勃且及时的探索必须克服四个主要挑战。能否在二维材料中设计激子有效压力来取代这些不响应电场的电荷中性准粒子?是否存在具有非零电偶极子和足够大的振荡器强度的新型激子,以实现二维异质结构的室温电可调谐性?哪些 2D 材料更适合在环境条件下工作的可调谐激子集成电路?有没有办法控制激子寿命?该提案将为上述挑战提供先驱答案和解决方案,以实现在环境条件下运行的集成电路中激子控制的阶跃变化。这一及时而雄心勃勃的目标将通过在一些最有前途的材料系统中探索激子物理学的新颖基础科学来实现,这些材料系统用于对激子通量进行片上控制,例如原子薄半导体。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrafast Tunable Terahertz-to-Visible Light Conversion through Thermal Radiation from Graphene Metamaterials.
- DOI:10.1021/acs.nanolett.3c00507
- 发表时间:2023-05-10
- 期刊:
- 影响因子:10.8
- 作者:Ilyakov, Igor;Ponomaryov, Alexey;Reig, David Saleta;Murphy, Conor;Mehew, Jake Dudley;de Oliveira, Thales V. A. G.;Prajapati, Gulloo Lal;Arshad, Atiqa;Deinert, Jan-Christoph;Craciun, Monica Felicia;Russo, Saverio;Kovalev, Sergey;Tielrooij, Klaas-Jan
- 通讯作者:Tielrooij, Klaas-Jan
Sharp ballistic p-n junction at room temperature using Zn metal doping of graphene
- DOI:10.1088/2053-1583/acd795
- 发表时间:2023-07-01
- 期刊:
- 影响因子:5.5
- 作者:Leontis,Ioannis;Prando,Gabriela Augusta;Russo,Saverio
- 通讯作者:Russo,Saverio
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saverio Russo其他文献
CVD Graphene/Lead (Pb)-based Cooper-pair splitter
CVD 石墨烯/铅 (Pb) 基库珀对分光器
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ivan V. Borzenets;Yuya Shimazaki;Gareth Jones;Monica Craciun;Saverio Russo;Michihasa Yamamoto;and Seigo Tarucha - 通讯作者:
and Seigo Tarucha
2層グラフェンPN接合デバイスの整流特性制御とバンドギャップ値の評価
两层石墨烯PN结器件的整流特性控制及带隙值评估
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
塩谷広樹;山本倫久;Saverio Russo;Monica F.Craciun;樽茶清悟 - 通讯作者:
樽茶清悟
Recent findings in (Ti)POSS-based polymer systems
- DOI:
10.1007/s00289-011-0445-8 - 发表时间:
2011-01-19 - 期刊:
- 影响因子:4.000
- 作者:
Aman Ullah;Jenny Alongi;Saverio Russo - 通讯作者:
Saverio Russo
Non Self-conjugate Strings, Singular Strings and Rigged Configurations in the Heisenberg Model
海森堡模型中的非自共轭弦、奇异弦和索具配置
- DOI:
10.1088/1742-5468/2015/02/p02004 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ivan Borzenets;Yuya Shimazaki;Gareth Jones;Saverio Russo;Michihisa Yamamoto;Seigo Tarucha;Anton Ayzenberg;Suraphong Yuma;Birgit Tremml-Werner;Tetsuo Deguchi and Pulak Ranjan Giri - 通讯作者:
Tetsuo Deguchi and Pulak Ranjan Giri
When did galaxies become round?
星系什么时候变成圆形的?
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Ivan Borzenets;Yuya Shimazaki;Gareth Jones;Saverio Russo;Michihisa Yamamoto;Seigo Tarucha;Anton Ayzenberg;Suraphong Yuma;Birgit Tremml-Werner;Tetsuo Deguchi and Pulak Ranjan Giri;Anton Ayzenberg;Suraphong Yuma - 通讯作者:
Suraphong Yuma
Saverio Russo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saverio Russo', 18)}}的其他基金
Electric and optical manipulation of 2D excitons for room temperature polariton blockade and valley qubits
用于室温极化子封锁和谷量子位的二维激子的电和光操纵
- 批准号:
EP/Y021339/1 - 财政年份:2024
- 资助金额:
$ 25.8万 - 项目类别:
Research Grant
Graphene based quantum information technologies
基于石墨烯的量子信息技术
- 批准号:
EP/K010050/1 - 财政年份:2013
- 资助金额:
$ 25.8万 - 项目类别:
Research Grant
Small items of research equipment at the University of Exeter
埃克塞特大学的小型研究设备
- 批准号:
EP/K031538/1 - 财政年份:2012
- 资助金额:
$ 25.8万 - 项目类别:
Research Grant
相似海外基金
PIRE: US-Japan Partnership in Excitonic Soft Materials for Clean Energy
PIRE:美日清洁能源激子软材料合作
- 批准号:
2230706 - 财政年份:2023
- 资助金额:
$ 25.8万 - 项目类别:
Standard Grant
Elucidation and control of excitonic potentials in atomic layer materials
原子层材料中激子势的阐明和控制
- 批准号:
23K13043 - 财政年份:2023
- 资助金额:
$ 25.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Topological magnetism realized by excitonic instability
通过激子不稳定性实现拓扑磁性
- 批准号:
23K19027 - 财政年份:2023
- 资助金额:
$ 25.8万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Quantum Monte Carlo methods beyond the fixed-node approximation: excitonic effects and hydrogen compounds
超越固定节点近似的量子蒙特卡罗方法:激子效应和氢化合物
- 批准号:
2316007 - 财政年份:2023
- 资助金额:
$ 25.8万 - 项目类别:
Standard Grant
Excitonic electroabsorption effects in macroscopically aligned carbon nanotubes
宏观排列碳纳米管中的激子电吸收效应
- 批准号:
2321366 - 财政年份:2023
- 资助金额:
$ 25.8万 - 项目类别:
Standard Grant
Excitonic topological states investigated by laser photoemission spectroscopy
激光光电子能谱研究激子拓扑态
- 批准号:
23K13041 - 财政年份:2023
- 资助金额:
$ 25.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Theory of soft and disordered excitonic nano-materials.
软无序激子纳米材料理论。
- 批准号:
RGPIN-2019-04734 - 财政年份:2022
- 资助金额:
$ 25.8万 - 项目类别:
Discovery Grants Program - Individual
Spectroscopic studies of excitonic materials for optoelectronic devices
光电器件用激子材料的光谱研究
- 批准号:
RGPIN-2017-06666 - 财政年份:2022
- 资助金额:
$ 25.8万 - 项目类别:
Discovery Grants Program - Individual
Resonance Raman polarization and high-energy excitonic states in semiconductor nanocrystals
半导体纳米晶体中的共振拉曼偏振和高能激子态
- 批准号:
2203301 - 财政年份:2022
- 资助金额:
$ 25.8万 - 项目类别:
Standard Grant














{{item.name}}会员




