Graphene based quantum information technologies
基于石墨烯的量子信息技术
基本信息
- 批准号:EP/K010050/1
- 负责人:
- 金额:$ 12.78万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Moore's law states that the computer processing power roughly doubles every 18 months, however this will not hold any longer when transistors reach the size of individual atoms. At this microscopic scale, quantum-mechanical phenomena play a central role and are no longer a simple support in improving the building blocks as is the case in most current information technologies (IT). Rather than viewing the quantum-mechanical behaviour as a problem, modern quantum information technology (QIT) uses quantum mechanics for novel schemes of storing, processing and exchanging information according to the fundamental laws of quantum physics. This additional freedom will enable future QIT to perform tasks which are not possible in standard IT. Clearly, this makes a strong case for future economic development as demonstrated for example by the Microsoft investment in creating Station-Q, which is a dedicated research centre in QIT. One of the major challenges in QIT is the "loss of information" in a relatively short time, a problem known as short quantum coherence time in semiconductor and superconducting quantum bits. Here we propose to overcome these limitations by exploiting the potential of graphene in QIT-devices. This is a deceptively simple material -one carbon atom thick- with high electrical conductivity. The relativistic charge carriers in graphene are expected to have an extraordinarily long coherence time which will allow the manipulation and transfer of information over macroscopic distances in a circuit even at room temperature. This is a property which is not found in any other known material. A prominent feature of these relativistic charge carriers is a novel charge conversion mechanism at the interface with superconductors, which spontaneously delivers spatially separated quantum-entangled pairs of electrons travelling on specularly symmetric trajectories. Pairs of entangled particles, so-called EPR pairs, play a special role and have been used as toy objects for fundamental studies. They form the core of Einstein's "spooky interaction at a distance", but also provide the basis of future applications like secure encoding, teleportation, quantum information technology and quantum computation. A solid state entangler device of electrons/holes has never been demonstrated before and its realization exploiting the unique properties of graphene is at the core of this proposal.
摩尔定律指出,计算机处理能力大约每18个月加倍,但是当晶体管达到单个原子的大小时,这将不再成立。在这种微观量表上,量子力学现象起着核心作用,并且不再像大多数当前信息技术(IT)那样改善构建块的简单支持。现代量子信息技术(QIT)并没有将量子机械行为视为问题,而是根据量子物理学的基本定律来使用量子力学来进行量子力学。这种额外的自由将使未来的QIT能够执行标准IT中无法实现的任务。显然,这为未来的经济发展提供了有力的理由,例如,Microsoft投资在创建QIT的专门研究中心就证明了这一点。 QIT的主要挑战之一是“信息丢失”在相对较短的时间内,这个问题称为半导体和超导量子位的短量子相干时间。在这里,我们建议通过利用石墨烯在QIT设备中的潜力来克服这些局限性。这是一种具有看似简单的材料 - 一碳原子厚 - 具有高电导率。石墨烯中的相对论电荷载体预计将具有非常长的连贯性时间,这将允许即使在室温下,也可以在电路中的宏观距离操纵和传递信息。这是在任何其他已知材料中都找不到的属性。这些相对论电荷载体的一个突出特征是与超导体界面处的一种新型电荷转换机制,该机制自发地提供了在镜面对称轨迹上行驶的空间分离的量子键入的电子对。成对的纠缠颗粒,所谓的EPR对起着特殊的作用,并被用作基础研究的玩具对象。它们构成了爱因斯坦“远距离怪异相互作用”的核心,但也提供了未来应用的基础,例如安全编码,传送,量子信息技术和量子计算。以前从未证明过电子/孔的固态缠绕器设备,其实现石墨烯独特性能是该提案的核心。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molybdenum-rhenium superconducting suspended nanostructures
钼铼超导悬浮纳米结构
- DOI:10.1063/1.4883115
- 发表时间:2014
- 期刊:
- 影响因子:4
- 作者:Aziz M
- 通讯作者:Aziz M
Is graphene a good transparent electrode for photovoltaics and display applications?
- DOI:10.1049/iet-cds.2015.0121
- 发表时间:2015-11-01
- 期刊:
- 影响因子:1.3
- 作者:Bointon, Thomas H.;Russo, Saverio;Craciun, Monica Felicia
- 通讯作者:Craciun, Monica Felicia
Large-area functionalized CVD graphene for work function matched transparent electrodes.
- DOI:10.1038/srep16464
- 发表时间:2015-11-09
- 期刊:
- 影响因子:4.6
- 作者:Bointon TH;Jones GF;De Sanctis A;Hill-Pearce R;Craciun MF;Russo S
- 通讯作者:Russo S
High quality monolayer graphene synthesized by resistive heating cold wall chemical vapour deposition
电阻加热冷壁化学气相沉积法合成高品质单层石墨烯
- DOI:
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Bointon Thomas H.
- 通讯作者:Bointon Thomas H.
Approaching magnetic ordering in graphene materials by FeCl$_3$ intercalation
通过 FeCl$_3$ 插层实现石墨烯材料中的磁有序化
- DOI:10.48550/arxiv.1506.04959
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Bointon T
- 通讯作者:Bointon T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saverio Russo其他文献
2層グラフェンPN接合デバイスの整流特性制御とバンドギャップ値の評価
两层石墨烯PN结器件的整流特性控制及带隙值评估
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
塩谷広樹;山本倫久;Saverio Russo;Monica F.Craciun;樽茶清悟 - 通讯作者:
樽茶清悟
CVD Graphene/Lead (Pb)-based Cooper-pair splitter
CVD 石墨烯/铅 (Pb) 基库珀对分光器
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ivan V. Borzenets;Yuya Shimazaki;Gareth Jones;Monica Craciun;Saverio Russo;Michihasa Yamamoto;and Seigo Tarucha - 通讯作者:
and Seigo Tarucha
Europäische and japanische diplomatische Praktiken and die Frag e nach Hybridität (16. /17. Jh.)
欧洲和日本的外交实践和模具混合 (16. /17. Jh.)
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Ivan Borzenets;Yuya Shimazaki;Gareth Jones;Saverio Russo;Michihisa Yamamoto;Seigo Tarucha;Masami Ouchi;Birgit Tremml-Werner - 通讯作者:
Birgit Tremml-Werner
Disintegration of Magnetic Flux in Decaying Sunspots as Observed with Hinode/SOT
用 Hinode/SOT 观测到的衰变太阳黑子中磁通量的衰变
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
塩谷広樹;山本倫久;徳光晋太郎;Saverio Russo;Monica F. Craciun;樽茶清悟;N. Ozawa and N. Monod;M.Kubo - 通讯作者:
M.Kubo
Non Self-conjugate Strings, Singular Strings and Rigged Configurations in the Heisenberg Model
海森堡模型中的非自共轭弦、奇异弦和索具配置
- DOI:
10.1088/1742-5468/2015/02/p02004 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ivan Borzenets;Yuya Shimazaki;Gareth Jones;Saverio Russo;Michihisa Yamamoto;Seigo Tarucha;Anton Ayzenberg;Suraphong Yuma;Birgit Tremml-Werner;Tetsuo Deguchi and Pulak Ranjan Giri - 通讯作者:
Tetsuo Deguchi and Pulak Ranjan Giri
Saverio Russo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saverio Russo', 18)}}的其他基金
Electric and optical manipulation of 2D excitons for room temperature polariton blockade and valley qubits
用于室温极化子封锁和谷量子位的二维激子的电和光操纵
- 批准号:
EP/Y021339/1 - 财政年份:2024
- 资助金额:
$ 12.78万 - 项目类别:
Research Grant
Tuneable Excitonic Integrated Circuits
可调谐激子集成电路
- 批准号:
EP/V048163/1 - 财政年份:2021
- 资助金额:
$ 12.78万 - 项目类别:
Research Grant
Small items of research equipment at the University of Exeter
埃克塞特大学的小型研究设备
- 批准号:
EP/K031538/1 - 财政年份:2012
- 资助金额:
$ 12.78万 - 项目类别:
Research Grant
相似国自然基金
基于石墨烯量子点多色电化学发光的肺癌标志物同时测量与成像研究
- 批准号:22374130
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于吡啶氮/石墨氮调控策略构筑窄半峰宽石墨烯量子点及其广色域显示增强机制
- 批准号:62305400
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
硅衬底上基于量子点的人工石墨烯特性探索
- 批准号:12274089
- 批准年份:2022
- 资助金额:56.00 万元
- 项目类别:面上项目
基于石墨烯和六角氮化硼薄膜的量子隧穿结的电致发光研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
硅衬底上基于量子点的人工石墨烯特性探索
- 批准号:
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
A Convergent Bioengineered Platform for Multifunctional Therapeutic Exosomes
多功能治疗性外泌体的融合生物工程平台
- 批准号:
10713513 - 财政年份:2023
- 资助金额:
$ 12.78万 - 项目类别:
Graphene-based atom chips: a high-performance platform for cold-atom quantum technologies
基于石墨烯的原子芯片:冷原子量子技术的高性能平台
- 批准号:
2602804 - 财政年份:2021
- 资助金额:
$ 12.78万 - 项目类别:
Studentship
Green Synthesis of Graphene-Based Nanomaterials and Graphene Quantum Dots from Unique Albany Graphite
利用独特的奥尔巴尼石墨绿色合成石墨烯基纳米材料和石墨烯量子点
- 批准号:
543434-2019 - 财政年份:2021
- 资助金额:
$ 12.78万 - 项目类别:
Collaborative Research and Development Grants
Next Generation Conventional and Micro Supercapacitors based on Functionalized Graphene Quantum Dots
基于功能化石墨烯量子点的下一代传统和微型超级电容器
- 批准号:
RGPIN-2017-04186 - 财政年份:2021
- 资助金额:
$ 12.78万 - 项目类别:
Discovery Grants Program - Individual
Identification of trace molecules with graphene devices based on static and dynamic analysis
基于静态和动态分析的石墨烯器件识别微量分子
- 批准号:
20H02159 - 财政年份:2020
- 资助金额:
$ 12.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)